版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届广东省肇庆市省部分重点中学高二数学第一学期期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等差数列中,已知,,则的前项和的最小值为()A. B.C. D.2.已知命题:;:若,则,则下列判断正确的是()A.为真,为真,为假 B.为真,为假,为真C.为假,为假,为假 D.为真,为假,为假3.已知等差数列,,,则数列的前项和为()A. B.C. D.4.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分又不必要条件5.若,则()A.22 B.19C.-20 D.-196.已知椭圆上一点到左焦点的距离为,是的中点,则()A.1 B.2C.3 D.47.已知空间向量,且与垂直,则等于()A.-2 B.-1C.1 D.28.在中,,,,若该三角形有两个解,则范围是()A. B.C. D.9.在公比为的等比数列中,前项和,则()A.1 B.2C.3 D.410.已知抛物线,则它的焦点坐标为()A. B.C. D.11.过点,且斜率为2的直线方程是A. B.C. D.12.已知,则的大小关系为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.展开式的常数项是________14.如图所示,在正方体中,点是底面内(含边界)的一点,且平面,则异面直线与所成角的取值范围为____________15.已知数列满足,定义使()为整数的k叫做“幸福数”,则区间内所有“幸福数”的和为_____16.若椭圆的长轴是短轴的2倍,且经过点,则椭圆的离心率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前n项和为,且(1)证明数列是等比数列,并求出数列的通项公式;(2)在与之间插入n个数,使得包括与在内的这个数成等差数列,其公差为,求数列的前n项和18.(12分)已知椭圆:的左、右焦点分别为,,离心率等于,点,且的面积等于(1)求椭圆的标准方程;(2)已知斜率存在且不为0的直线与椭圆交于A,B两点,当点A关于y轴的对称点在直线PB上时,直线是否过定点?若过定点,求出此定点;若不过,请说明理由19.(12分)已知函数f(x)=ax-2lnx(1)讨论f(x)的单调性;(2)设函数g(x)=x-2,若存在,使得f(x)≤g(x),求a的取值范围20.(12分)已知关于的不等式(1)若不等式的解集为,求的值(2)若不等式的解集为,求的取值范围21.(12分)为弘扬中华优秀传统文化,鼓励全民阅读经典书籍,某市举行阅读月活动,现统计某街道约10000人在该活动月每人每日平均阅读时间(分钟)的频率分布直方图如图:(1)求x的值;(2)从该街道任选1人,则估计这个人的每日平均阅读时间超过60分钟的概率.22.(10分)某公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间x与乘客等候人数y之间的关系,经过调查得到如下数据:间隔时间x/分101112131415等候人数y/人232526292831调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数y的差,若差值的绝对值都不超过1,则称所求方程是“恰当回归方程”.(1)若选取的是中间4组数据,求y关于x的线性回归方程=x+,并判断此方程是否是“恰当回归方程”.(2)假设该起点站等候人数为24人,请你根据(1)中的结论预测车辆发车间隔多少时间合适?附:对于一组数据(x1,y1),(x2,y2),(xn,yn),其回归直线=x+的斜率和截距的最小二乘估计分别为
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由等差数列的性质将转化为,而,可知数列是递增数,从而可求得结果【详解】∵等差数列中,,∴,即.又,∴的前项和的最小值为故选:B2、D【解析】先判断出命题,的真假,即可判断.【详解】因为成立,所以命题为真,由可得或,所以命题为假命题,所以为真,为假,为假.故选:D.3、A【解析】求出通项,利用裂项相消法求数列的前n项和.【详解】因为等差数列,,,所以,所以,所以数列的前项和为故B,C,D错误.故选:A.4、B【解析】根据充分条件和必要条件的定义判断即可求解.【详解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分条件,故选:B.5、C【解析】将所求进行变形可得,根据二项式定理展开式,即可求得答案.【详解】由题意得所以.故选:C6、A【解析】由椭圆的定义得,进而根据中位线定理得.【详解】解:由椭圆方程得,即,因为由椭圆的定义得,,所以,因为是的中点,是的中点,所以.故选:A7、B【解析】直接利用空间向量垂直的坐标运算即可解决.【详解】∵∴∴,解得,故选:B.8、D【解析】根据三角形解得个数可直接构造不等式求得结果.【详解】三角形有两个解,,即.故选:D.9、C【解析】先利用和的关系求出和,再求其公比.【详解】由,得,,所以,,则.故选:C.10、D【解析】将抛物线方程化标准形式后得到焦准距,可得结果.【详解】由得,所以,所以,所以抛物线的焦点坐标为.故选:D.【点睛】关键点点睛:将抛物线方程化为标准形式是解题关键.11、A【解析】由直线点斜式计算出直线方程.【详解】因为直线过点,且斜率为2,所以该直线方程为,即.故选【点睛】本题考查了求直线方程,由题意已知点坐标和斜率,故选用点斜式即可求出答案,较为简单.12、B【解析】构造利用导数判断函数在上单调递减,利用单调性比较大小【详解】设恒成立,函数在上单调递减,.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出的通项公式,令的指数为0,即可求解.【详解】的通项公式是,,依题意,令,所以的展开式中的常数项为.故答案为:.14、【解析】过作平面平面,得到在与平面的交线上,连接,证得平面平面,得到点在上,设正方体的棱长为,且,得到,,设与所成角为,利用向量的夹角公式,求得,结合二次函数的性质,即可求解.【详解】过作平面平面,因为点是底面内(含边界)的一点,且平面,则平面,即在与平面的交线上,连接,因为且,所以四边形是平行四边形,所以,平面,同理可证平面,所以平面平面,则平面即为,点在线段上,设正方体的棱长为,且,则,,可得,设与所成角为,则,当时,取得最小值,最小值为,当或时,取得最大值,最大值为故答案为15、2036【解析】先用换底公式化简之后,将表示出来,找出满足条件的“幸福数”,然后求和即可.【详解】当时,,所以,若满足正整数,则,即,所以在内的所有“幸福数”的和为:,故答案为:2036.16、【解析】分类讨论焦点在轴与焦点在轴两种情况.【详解】因为椭圆经过点,当焦点在轴时,可知,,所以,所以,当焦点在轴时,同理可得.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,(2)【解析】(1)根据公式得到,得到,再根据等比数列公式得到答案.(2)根据等差数列定义得到,再利用错位相减法计算得到答案.【小问1详解】,当时,,得到;当时,,两式相减得到,整理得到,即,故,数列是首项为,公比为的等比数列,,即,验证时满足条件,故.【小问2详解】,故,,,两式相减得到:,整理得到:,故.18、(1)(2)【解析】(1)用待定系数法求出椭圆的标准方程;(2)设直线的方程为,设,用“设而不求法”表示出和.表示出直线PB,把A关于y轴的对称点为带入后整理化简,即可得到,从而可以判断出直线恒过定点.【小问1详解】由题意可得:,解得:,所以椭圆的标准方程为:.【小问2详解】由题意可知,直线的斜率存在且不为0,设直线的方程为,设设点A关于y轴的对称点为.联立方程组,消去y可得:,所以.因为直线PB的方程为,且点D在直线PB上,所以则,所以,则,故,因为k≠0,所以,则直线l的方程为,所以直线恒过定点.19、(1)答案见解析;(2).【解析】(1)根据实数a的正负性,结合导数的性质分类讨论求解即可;(2)利用常变量分离法,通过构造函数,利用导数的性质进行求解即可.【小问1详解】当a≤0时,在(0,+∞)上恒成立;当a>0时,令得;令得;综上:a≤0时f(x)在(0,+∞)上单调递减;a>0时,f(x)在上单调递减,在上单调递增;【小问2详解】由题意知ax-2lnx≤x-2在(0,+∞)上有解则ax≤x-2+2lnx,令,xg'(x)+0-g(x)↗极大值↘所以,因此有所以a的取值范围为:【点睛】关键点睛:运用常变量分离法利用导数的性质是解题的关键.20、(1);(2)【解析】(1)根据关于的不等式的解集为,得到和1是方程的两个实数根,再利用韦达定理求解.(2)根据关于的不等式的解集为.又因为,利用判别式法求解.【详解】(1)因为关于的不等式的解集为,所以和1是方程的两个实数根,由韦达定理可得,得(2)因为关于的不等式的解集为因为所以,解得,故的取值范围为【点睛】本题主要考查一元二次不等式的解集和恒成立问题,还考查了运算求解的能力,属于中档题.21、(1)(2)0.7【解析】(1)利用概率和为1计算可得的值;(2)求频率分布直方图中每人每日平均阅读时间超过60分钟的概率即为这个人阅读时间超过60分钟的概率.【小问1详解】由得【小问2详解】,估计这个人的每日平均阅读时间超过60分钟的概率为22、(1),是“恰当回归方程”;(2)10分钟较合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年神木市尔林兔镇中心卫生院招聘备考题库及一套答案详解
- 2026年摩托车维修(发动机维修)试题及答案
- 2025年高职机电一体化技术(PLC编程应用)试题及答案
- 2025年大学区块链工程(区块链安全技术)试题及答案
- 2025年中职(康复辅助)假肢适配试题及答案
- 2025年大学中国现代文学(戏剧解读)试题及答案
- 2025年大学市场营销(市场调研基础)试题及答案
- 2025年中职(安全技术与管理)安全防护阶段测试题及答案
- 2025年中职服装工艺(工艺优化)试题及答案
- 2025年大学大一(物联网工程)通信操作试题及答案
- 四川省融媒体中心历年招聘考试真题库
- 股东代为出资协议书
- 消防管道拆除合同协议
- 青少年交通安全法规
- 《数据统计分析课件》
- 2024压力容器设计审批考试题库 判断题
- OWASP LLM人工智能网络安全与治理清单(中文版)
- 钻机检验表格
- GB/T 44143-2024科技人才评价规范
- 河南省洛阳市2023-2024学年高二上学期期末考试英语试题(解析版)
- JGT124-2017 建筑门窗五金件 传动机构用执手
评论
0/150
提交评论