版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省枣阳市高级中学2026届高一数学第一学期期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆上的一段弧长等于该圆的内接正方形的边长,则这段弧所对的圆周角的弧度数为()A. B.C. D.2.若,则角终边所在象限是A.第一或第二象限 B.第一或第三象限C.第二或第三象限 D.第三或第四象限3.已如集合,,,则()A. B.C. D.4.已知直线是函数图象的一条对称轴,的最小正周期不小于,则的一个单调递增区间为()A. B.C. D.5.定义运算,若函数,则的值域是()A. B.C. D.6.若函数y=f(x)图象上存在不同的两点A,B关于y轴对称,则称点对[A,B]是函数y=f(x)的一对“黄金点对”(注:点对[A,B]与[B,A]可看作同一对“黄金点对”).已知函数f(x)=,则此函数的“黄金点对“有()A.0对 B.1对C.2对 D.3对7.如图是函数在一个周期内的图象,则其解析式是()A. B.C. D.8.已知圆,圆,则两圆的位置关系为A.相离 B.相外切C.相交 D.相内切9.如图,在中,点是线段及、的延长线所围成的阴影区域内(含边界)的任意一点,且,则在直角坐标平面上,实数对所表示的区域在直线的右下侧部分的面积是()A. B.C. D.不能求10.已知在正四面体ABCD中,E是AD的中点,P是棱AC上的一动点,BP+PE的最小值为,则该四面体内切球的体积为()A.π B.πC.4π D.π二、填空题:本大题共6小题,每小题5分,共30分。11.若函数满足:对任意实数,有且,当[0,1]时,,则[2017,2018]时,______________________________12.已知正实数,,且,若,则的值域为__________13.如图,、、、分别是三棱柱的顶点或所在棱的中点,则表示直线与是异面直线的图形有______.14.若,,,则的最小值为______.15.函数的递减区间是__________.16.是第___________象限角.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆经过,两点,且圆心在直线上()求圆的方程()过的直线与圆相交于,且,求直线的方程18.(1)已知是奇函数,求的值;(2)画出函数图象,并利用图象回答:为何值时,方程无解?有一解?有两解.19.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若,则=___________.20.已知,,,.(1)求的值;(2)求的值.21.已知集合.(1)当时,求;(2)若,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】求出圆内接正方形边长(用半径表示),然后由弧度制下角的定义可得【详解】设此圆的半径为,则正方形的边长为,设这段弧所对的圆周角的弧度数为,则,解得,故选:C.【点睛】本题考查弧度制下角的定义,即圆心角等于所对弧长除以半径.本题属于简单题2、D【解析】利用同角三角函数基本关系式可得,结合正切值存在可得角终边所在象限【详解】,且存在,角终边所在象限是第三或第四象限故选D【点睛】本题考查三角函数的象限符号,是基础题3、C【解析】根据交集和补集的定义可求.【详解】,故,故选:C.4、B【解析】由周期得出的范围,再由对称轴方程求得值,然后由正弦函数性质确定单调性【详解】根据题意,,所以,,,所以,,故,所以.令,,得,.令,得的一个单调递增区间为.故选:B5、C【解析】由定义可得,结合指数函数性质即可求出.【详解】由定义可得,当时,,则,当时,,则,综上,的值域是.故选:C.6、D【解析】根据“黄金点对“,只需要先求出当x<0时函数f(x)关于y轴对称的函数的解析式,再作出函数的图象,利用两个图象交点个数进行求解即可【详解】由题意知函数f(x)=2x,x<0关于y轴对称的函数为,x>0,作出函数f(x)和,x>0的图象,由图象知当x>0时,f(x)和y=()x,x>0的图象有3个交点所以函数f(x)的““黄金点对“有3对故选D【点睛】本题主要考查分段函数的应用,结合“黄金点对“的定义,求出当x<0时函数f(x)关于y轴对称的函数的解析式,作出函数的图象,利用数形结合是解决本题的关键7、B【解析】通过函数的图象可得到:A=3,,,则,然后再利用点在图象上求解.,【详解】由函数的图象可知:A=3,,,所以,又点在图象上,所以,即,所以,即,因为,所以所以故选:B【点睛】本题主要考查利用三角函数的图象求解析式,还考查了运算求解的能力,属于中档题.8、A【解析】利用半径之和与圆心距的关系可得正确的选项.【详解】圆,即,圆心为(0,3),半径为1,圆,即,圆心为(4,0),半径为3..所以两圆相离,故选:A.9、A【解析】由点是由线段及、的延长线所围成的阴影区域内(含边界)的任意一点,作的平行线,把中、所满足的不等式表示出来,然后作出不等式组所表示的可行域,并计算出可行域在直线的右下侧部分的面积即可.【详解】如下图,过作,交的延长线于,交的延长线于,设,,,,则,所以,得,所以.作出不等式组对应的可行域,如下图中阴影部分所示,故所求面积为,故选:A.【点睛】本题考查二元一次不等式组与平面区域的关系,考查转化思想,是难题.解决本题的关键是建立、的不等式组,将问题转化为线性规划问题求解.10、D【解析】首先设正四面体的棱长为,将侧面和沿边展开成平面图形,根据题意得到的最小值为,从而得到,根据等体积转化得到内切球半径,再计算其体积即可.【详解】设正四面体的棱长为,将侧面和沿边展开成平面图形,如图所示:则的最小值为,解得.如图所示:为正四面体的高,,正四面体高.所以正四面体的体积.设正四面体内切球的球心为,半径为,如图所示:则到正四面体四个面的距离相等,都等于,所以正四面体的体积,解得.所以内切球的体积.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意可得:,则,据此有,即函数的周期为,设,则,据此可得:,若,则,此时.12、【解析】因为,所以.因为且,.所以,所以,所以,.则的值域为.故答案为.13、②④【解析】图①中,直线,图②中面,图③中,图④中,面【详解】解:根据题意,在①中,且,则四边形是平行四边形,有,不是异面直线;图②中,、、三点共面,但面,因此直线与异面;在③中,、分别是所在棱的中点,所以且,故,必相交,不是异面直线;图④中,、、共面,但面,与异面所以图②④中与异面故答案为:②④.14、【解析】利用基本不等式求出即可.【详解】解:若,,则,当且仅当时,取等号则的最小值为.故答案为:.【点睛】本题考查了基本不等式的应用,属于基础题.15、【解析】先求出函数的定义域,再根据复合函数单调性“同增异减”原则求出函数的单调递减区间即可得出答案【详解】解:意可知,解得,所以的定义域是,令,对称轴是,在上是增函数,在是减函数,又在定义域上是增函数,是和的复合函数,的单调递减区间是,故答案为:【点睛】本题主要考查对数型复合函数的单调区间,属于基础题16、三【解析】根据给定的范围确定其象限即可.【详解】由,故在第三象限.故答案为:三.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)x=2或15x﹣8y﹣30=0【解析】(1)由圆心C在直线2x﹣y﹣2=0上,可设圆C的圆心为(a,2a﹣2),半径为r,再由圆C过点A(1,4),B(3,6)两点,列关于a,r的方程组,求解可得a,r的值,则圆C的方程可求;(2)当直线l的斜率不存在时,直线方程为x=2,求得M,N的坐标,可得|MN|=2,满足题意;当直线l的斜率不存在时,设直线l的方程为y=k(x﹣2),则kx﹣y﹣2k=0,由|MN|=2,可得圆心到直线的距离为1,由点到直线的距离公式列式求得k值,则直线l的方程可求【详解】解:(1)∵圆心C在直线2x﹣y﹣2=0上,∴设圆C的圆心为(a,2a﹣2),半径为r,又∵圆C过点A(1,4),B(3,6)两点,∴,解得,则圆C的方程为(x﹣3)2+(y﹣4)2=4;(2)当直线l的斜率不存在时,直线方程为x=2,联立,解得M(2,4),N(2,4),此时|MN|;当直线l的斜率存在时,设直线l的方程为y=k(x﹣2),则kx﹣y﹣2k=0,∵|MN|=2,∴圆心到直线的距离为d,解得k,则直线l的方程为15x﹣8y﹣30=0,综上,直线l的方程为x=2或15x﹣8y﹣30=0【点睛】本题考查圆的方程的求法,考查直线与圆位置关系的应用,考查垂径定理的应用,是中档题18、(1);(2)时,无解;时,有两个解;或时,有一个解.【解析】(1)由奇函数的定义,,代入即可得出结果.(2)画出函数图象,结合函数图象可得出结果.【详解】(1)为奇函数,,所以(2)函数图象如图,可知时,无解;时,有两个解;或时,有一个解【点睛】本题考查了奇函数的定义,考查了运算求解能力和画图能力,数形结合思想,属于基础题目.19、【解析】因为和关于轴对称,所以,那么,(或),所以.【考点】同角三角函数,诱导公式,两角差余弦公式【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若与的终边关于轴对称,则,若与的终边关于轴对称,则,若与的终边关于原点对称,则.20、(1);(2).【解析】(1)由已知利用同角三角函数基本关系式可求,的值,进而根据,利用两角差的余弦函数公式即可求解(2)利用二倍角公式可求,的值,进而即可代入求解【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026秋招:太原重型机械集团笔试题及答案
- 热拉丝工班组管理测试考核试卷含答案
- 金融行业数据治理与安全管理手册
- 井下采煤机司机班组安全竞赛考核试卷含答案
- 足篮排球制作工操作管理强化考核试卷含答案
- 2026秋招:首都旅游集团面试题及答案
- 纤维染色工安全防护知识考核试卷含答案
- 石膏装饰板加工工安全知识宣贯模拟考核试卷含答案
- 工业车辆维修工安全知识宣贯竞赛考核试卷含答案
- 环氧乙烷(乙二醇)装置操作工冲突管理考核试卷含答案
- 黑龙江省哈尔滨市师范大学附中2026届数学高三第一学期期末质量检测模拟试题含解析
- DB31T+1661-2025公共区域电子屏播控安全管理要求
- 医疗联合体儿童保健服务模式创新
- 2026年书记员考试题库附答案
- 中国高尿酸血症与痛风诊疗指南(2024更新版)课件
- 2025至2030中国专用车行业发展分析及投资前景与战略规划报告
- DB13∕T 6066.3-2025 国资数智化 第3部分:数据治理规范
- 2025年白山辅警招聘考试题库及答案1套
- 特种设备外借协议书
- 三元股份财务风险控制研究
- DBJ-T 13-417-2023 工程泥浆技术标准
评论
0/150
提交评论