2026届安徽舒城桃溪中学数学高二上期末经典试题含解析_第1页
2026届安徽舒城桃溪中学数学高二上期末经典试题含解析_第2页
2026届安徽舒城桃溪中学数学高二上期末经典试题含解析_第3页
2026届安徽舒城桃溪中学数学高二上期末经典试题含解析_第4页
2026届安徽舒城桃溪中学数学高二上期末经典试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届安徽舒城桃溪中学数学高二上期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的右焦点为,则正数的值是()A.3 B.4C.9 D.212.已知命题p:“是方程表示椭圆”的充要条件;命题q:“是a,b,c成等比数列”的必要不充分条件,则下列命题为真命题的是()A. B.C. D.3.椭圆=1的一个焦点为F,过原点O作直线(不经过焦点F)与椭圆交于A,B两点,若△ABF的面积是20,则直线AB的斜率为()A. B.C. D.4.已知a,b为正数,,则下列不等式一定成立的是()A. B.C. D.5.与的等差中项是()A. B.C. D.6.若实数满足约束条件,则最小值为()A.-2 B.-1C.1 D.27.如图,在四棱锥中,平面,底面是正方形,,则下列数量积最大的是()A. B.C. D.8.已知向量,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.若双曲线离心率为,过点,则该双曲线的方程为()A. B.C. D.10.已知双曲线满足,且与椭圆有公共焦点,则双曲线的方程为()A. B.C. D.11.在中,a,b,c分别为角A,B,C的对边,已知,,的面积为,则()A. B.C. D.12.数列1,6,15,28,45,...中的每一项都可用如图所示的六边形表示出来,故称它们为六边形数,那么第10个六边形数为()A.153 B.190C.231 D.276二、填空题:本题共4小题,每小题5分,共20分。13.如图,已知AB,CD分别是圆柱上、下底面圆的直径,且,若该圆柱的底面圆直径是其母线长的2倍,则异面直线AC与BD所成角的余弦值为______14.在空间直角坐标系中,经过且法向量的平面方程为,经过且方向向量的直线方程为阅读上面材料,并解决下列问题:给出平面的方程,经过点的直线的方程为,则直线l与平面所成角的余弦值为___________.15.已知春季里,甲地每天下雨的概率为,乙地每天下雨的概率大于0,且甲、乙两地下雨相互独立,则春季的一天里,已知乙地下雨的条件下,甲地也下雨的概率为___________.16.如图,茎叶图所示数据平均分为91,则数字x应该是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=1,BC=2,PA=1(1)求证:AB⊥PC;(2)点M在线段PD上,二面角M﹣AC﹣D的余弦值为,求三棱锥M﹣ACP体积18.(12分)已知函数,其中a为正数(1)讨论单调性;(2)求证:19.(12分)中,角A,B,C所对的边分别为.已知.(1)求的值;(2)求的面积.20.(12分)如图,四棱锥中,底面是边长为2的正方形,,,且,为的中点(1)求平面与平面夹角的余弦值;(2)在线段上是否存在点,使得点到平面的距离为?若存在,确定点的位置;若不存在,请说明理由21.(12分)在中,角的对边分别为,已知,,且.(1)求角的大小;(2)若,面积为,试判断的形状,并说明理由.22.(10分)已知椭圆C:的离心率为,短轴的一个端点到右焦点的距离为2.(1)椭圆C的方程;(2)设直线l:交椭圆C于A,B两点,且,求m的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由直接可得.【详解】由题知,所以,因为,所以.故选:A2、C【解析】先判断命题p,q的真假,从而判断的真假,再根据“或”“且”命题的真假判断方法,可得答案.【详解】当时,表示圆,故命题p:“是方程表示椭圆”的充要条件是假命题,命题q:“是a,b,c成等比数列”的必要不充分条件为真命题,则是真命题,是假命题,故是假命题,是假命题,是真命题,是假命题,故选:C3、A【解析】分情况讨论当直线AB的斜率不存在时,可求面积,检验是否满足条件,当直线AB的斜率存在时,可设直线AB的方程y=kx,联立椭圆方程,可求△ABF2的面积为S=2代入可求k【详解】由椭圆=1,则焦点分别为F1(-5,0),F2(5,0),不妨取F(5,0)①当直线AB的斜率不存在时,直线AB的方程为x=0,此时AB=4,=AB•5=×5=10,不符合题意;②可设直线AB的方程y=kx,由,可得(4+9k2)x2=180,∴xA=6,yA=,∴△ABF2的面积为S=2=2××5×=20,∴k=±故选:A4、A【解析】构造新函数,以函数单调性把不等式转化为整式不等式即可解决.【详解】不等式可化为:令,则则函数为单调增函数.由可得故选:A5、A【解析】代入等差中项公式即可解决.【详解】与的等差中项是故选:A6、B【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案【详解】由约束条件作出可行域如图,联立,解得,由,得,由图可知,当直线过时,直线在轴上的截距最小,有最小值为故选:B7、B【解析】设,根据线面垂直的性质得,,,,根据向量数量积的定义逐一计算,比较可得答案.【详解】解:设,因为平面,所以,,,,又底面是正方形,所以,,对于A,;对于B,;对于C,;对于D,,所以数量积最大的是,故选:B.8、A【解析】根据平面向量垂直的性质,结合平面向量数量积的坐标表示公式、充分性、必要性的定义进行求解判断即可.详解】当时,有,显然由,但是由不一定能推出,故选:A9、B【解析】分析可得,再将点代入双曲线的方程,求出的值,即可得出双曲线的标准方程.【详解】,则,,则双曲线的方程为,将点的坐标代入双曲线的方程可得,解得,故,因此,双曲线的方程为.故选:B10、A【解析】根据椭圆的标准方程求出,利用双曲线,结合建立方程求出,,即可求出双曲线的渐近线方程【详解】椭圆的标准方程为,椭圆中的,双曲线的焦点与椭圆的焦点相同,双曲线中,双曲线满足,即又在双曲线中,即,解得:,所以双曲线的方程为,故选:A【点睛】关键点点睛:本题主要考查双曲线方程的求解,根据椭圆和双曲线的关系建立方程求出,,是解决本题的关键,考查学生的计算能力,属于基础题11、C【解析】利用面积公式,求出,进而求出,利用余弦定理求出,再利用正弦定理求出【详解】由面积公式得:,因为的面积为,所以,求得:因,所以由余弦定理得:所以由正弦定理得:,即,解得:故选:C12、B【解析】细心观察,寻求相邻项及项与序号之间的关系,同时联系相关知识,如等差数列、等比数列等,结合图形可知,,,,,,,据此即可求解.【详解】由题意知,数列的各项为1,6,15,28,45,...所以,,,,,,所以.故选:B【点睛】本题考查合情推理中的归纳推理;考查逻辑推理能力;观察分析、寻求规律是求解本题的关键;属于中档题、探索型试题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】利用空间向量夹角公式进行求解即可.【详解】取CD的中点O,以O为原点,以CD所在直线为x轴,以底面内过点O且与CD垂直的直线为y轴,以过点O且与底面垂直的直线为z轴,建立如图所示的空间直角坐标系设,则,,,,,,所以,所以异面直线AC与BD所成角的余弦值为故答案为:14、##【解析】根据材料结合已知条件求得平面的法向量以及直线的方向向量,即可用向量法求得线面角.【详解】因为平面的方程,不妨令,则,故其过点,设其法向量为,根据题意则,即,又平面的方程为,则,不妨取,则,则平面的法向量;经过点的直线的方程为,不妨取,则,则该直线过点,则直线的方向向量.设直线与平面所成的角为,则.又,故,即直线l与平面所成角的余弦值为.故答案为:.15、##0.5【解析】根据条件概率求概率的方法即可求得答案.【详解】设A表示“甲地每天下雨”,B表示“乙地每天下雨”,乙地每天下雨的概率为p,则,因为甲乙两地下雨相互独立,所以,于是在乙地下雨的条件下,甲地也下雨的概率为.故答案为:.16、1【解析】结合茎叶图以及平均数列出方程,即可求出结果.【详解】由题意可知,解得,故答案为:1.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)将问题转化为证明AB⊥平面PAC,然后结合已知可证;(2)建立空间直角坐标系,用向量法结合已知先确定点M位置,然后转化法求体积可得.【小问1详解】由题意得四边形ADCB是直角梯形,AD=CD=1,故∠ACD=45°,∠ACB=45°,AC=.又BC=2,所以,所以,所以AB⊥AC.又PA⊥平面ABCD,AB平面ABCD,所以PA⊥AB.而PA平面PAC,AC平面PAC,,所以AB⊥平面PAC.又PC平面PAC,所以AB⊥PC【小问2详解】过点A作AE⊥BC于E,易知E为BC中点,以A为原点,AE,AD,AP所在直线为x轴,y轴,z轴建立空间直角坐标系,则,,,.则设,.显然,是平面ACD的一个法向量,设平面MAC的一个法向量为.则有,取,解得由二面角M﹣AC﹣D的余弦值为,有,解得,所以M为PD中点.所以18、(1)答案见解析(2)证明见解析【解析】(1)求解函数的导函数,并且求的两个根,然后分类讨论,和三种情况下对应的单调性;(2)令,通过二次求导法,判断函数的单调性与最小值,设的零点为,求出取值范围,最后将转化为的对勾函数并求解最小值,即可证明出不等式.【小问1详解】函数的定义域为∵令得∵,∴,得或①当,即时,时,或;时,.∴在上单调递增,在上单调递减,在上单调递增②当,即时,时,或;时,.∴在上单调递增,在上单调递减,在上单调递增③当,即时,∴在上单调递增综上所述:当时,在和上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增【小问2详解】令,()∴,令∴,∴在上单调递增又∵,,∴使得,即(*)∴当时,,∴,∴单调递减∴当时,,∴,∴单调递增∴,()由(*)式可知:,∴,∴∵,∴函数单调递减∴,∴∴【点睛】求解本题的关键是利用二次求导法,通过虚设零点,求解原函数的单调性与最小值,并通过最小值的取值范围证明不等式.19、(1);(2).【解析】(1)根据求出,根据求出,根据正弦定理求出;(2)先求出,再利用面积公式即可求出.【详解】(1)在中,由题意知,又因为,所有,由正弦定理可得.(2)由得,由,得.所以.因此,的面积.【点睛】本题考查正弦定理和三角形面积公式的应用,属于中档题.20、(1)(2)存在,点为线段的靠近点的三等分点【解析】(1)根据题意证得平面,进而证得平面,得到平面,以点为坐标原点,,,所在直线分别为轴、轴和轴建立空间直角坐标系,求得平面和平面的法向量,结合向量的夹角公式,即可求解;(2)设点,求得平面的法向量为,结合向量的距离公式列出方程,求得的值,即可得到答案.【小问1详解】解:因为四边形为正方形,则,,由,,,所以平面,因为平面,所以,又由,,,所以平面,又因为平面,所以,因为且平面,所以平面,由平面,且,不妨以点为坐标原点,,,所在直线分别为轴、轴和轴建立空间直角坐标系,如图所示,则,,,,可得,,,设平面的法向量为,则,取,可得,所以,易得平面的法向量为,则,由平面与平面夹角为锐角,所以平面与平面夹角的余弦值【小问2详解】解:设点,可得,,设平面的法向量为,则,取,可得,所以,所以点到平面的距离为,解得,即或因为,所以故当点为线段的靠近点的三等分点时,点到平面的距离为.21、(1);(2)为等边三角形【解析】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得sinB(2cosA﹣1)=0,从而得角A;(2)由S△ABC=bcsinA=,可得bc=3,①;再由余弦定理a2=b2+c2﹣2bccosA可得b2+c2=6,②;联立①②可求得b=c=,从而可判断△ABC的形状【详解】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得(2sinB﹣sinC)cosA﹣sinAcosC=0,∴2sinBcosA﹣sin(A+C)=0,sinB(2cosA﹣1)=0∵0<B<π,∴sinB≠0,∴cosA=.∵0<A<π,∴A=(2)△ABC为等边三角形,∵S△ABC=bcsinA=,即bcsin=,∴bc=3,①∵a2=b2+c

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论