版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江西省新余四中数学高一上期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设全集,,,则如图阴影部分表示的集合为()A. B.C. D.2.设,则()A. B.C. D.3.已知函数的图象的对称轴为直线,则()A. B.C. D.4.将函数的图象上各点的纵坐标不变,横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心是A. B.C. D.5.某几何体的三视图如图所示,则该几何体的体积为()A.8π B.16πC. D.6.设R,则“>1”是“>1”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.设平面向量满足,且,则的最大值为A.2 B.3C. D.8.已知角α的终边过点,则的值是()A. B.C.0 D.或9.下列函数中与是同一函数的是()(1)(2)(3)(4)(5)A.(1)(2) B.(2)(3)C.(2)(4) D.(3)(5)10.已知,,,则,,大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知角终边经过点,则___________.12.若函数在单调递增,则实数的取值范围为________13.不等式的解集是___________.14.若“”为假命题,则实数m最小值为___________.15.将函数y=sinx的图象上的所有点向右平移个单位长度,所得图象的函数解析式为_________.16.若一个扇形的周长为,圆心角为2弧度,则该扇形的面积为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.2021年新冠肺炎疫情仍在世界好多国家肆虐,并且出现了传染性更强的“德尔塔”、“拉姆达”、“奥密克戎”变异毒株,尽管我国抗疫取得了很大的成绩,疫情也得到了很好的遏制,但由于整个国际环境的影响,时而也会出现一些散发病例,故而抗疫形势依然艰巨,日常防护依然不能有丝毫放松.某科研机构对某变异毒株在一特定环境下进行观测,每隔单位时间进行一次记录,用表示经过单位时间的个数,用表示此变异毒株的数量,单位为万个,得到如下观测数据:123456(万个)1050250若该变异毒株的数量(单位:万个)与经过个单位时间的关系有两个函数模型与可供选择.(1)判断哪个函数模型更合适,并求出该模型的解析式;(2)求至少经过多少个单位时间该病毒的数量不少于1亿个.(参考数据:)18.已知函数(1)判断函数在区间上的单调性,并用定义证明其结论;(2)求函数在区间上的最大值与最小值19.已知是定义在上的奇函数.(1)求实数和的值;(2)根据单调性的定义证明:在定义域上为增函数.20.设为奇函数,为常数.(1)求的值;(2)证明:在内单调递增;(3)若对于上的每一个的值,不等式恒成立,求实数的取值范围.21.已知函数(且)的图象恒过点A,且点A在函数的图象上.(1)求的最小值;(2)若,当时,求的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】解出集合、,然后利用图中阴影部分所表示的集合的含义得出结果.【详解】,.图中阴影部分所表示的集合为且.故选:D.【点睛】本题考查韦恩图表示的集合的求解,同时也考查了一元二次不等式的解法,解题的关键就是弄清楚阴影部分所表示的集合的含义,考查运算求解能力,属于基础题.2、A【解析】利用中间量隔开三个值即可.【详解】∵,∴,又,∴,故选:A【点睛】本题考查实数大小的比较,考查指对函数的性质,属于常考题型.3、A【解析】根据二次函数的图像的开口向上,对称轴为,可得,且函数在上递增,再根据函数的对称性以及单调性即可求解.【详解】二次函数的图像的开口向上,对称轴为,且函数在上递增,根据二次函数的对称性可知,又,所以,故选:A【点睛】本题考查了二次函数的单调性以及对称性比较函数值的大小,属于基础题.4、A【解析】由函数的图象上各点的纵坐标不变,横坐标伸长到原来的3倍得到,向右平移个单位得到,将代入得,所以函数的一个对称中心是,故选A5、A【解析】由三视图还原直观图得到几何体为高为4,底面半径为2圆柱体的一半,即可求出体积.【详解】由三视图知:几何体直观图为下图圆柱体:高为h=4,底面半径r=2圆柱体的一半,∴,故选:A6、A【解析】由可得成立,反之不成立,所以“”是“”的充分不必要条件考点:充分条件与必要条件7、C【解析】设,∵,且,∴∵,当且仅当与共线同向时等号成立,∴的最大值为.选C点睛:由于向量,且,因此向量确定,这是解题的基础也是关键.然后在此基础上根据向量模的三角不等式可得的范围,解题时要注意等号成立的条件8、B【解析】根据三角函数的定义进行求解即可.【详解】因为角α的终边过点,所以,,,故选:B9、C【解析】将5个函数的解析式化简后,根据相等函数的判定方法分析,即可得出结果.【详解】(1)与定义域相同,对应关系不同,不是同一函数;(2)与的定义域相同,对应关系一致,是同一函数;(3)与定义与相同,对应关系不同,不是同一函数;(4)与定义相同,对应关系一致,是同一函数;(5)与对应关系不同,不是同一函数;故选:C.10、C【解析】由对数的性质,分别确定的大致范围,即可得出结果.【详解】因为,所以,,所以,,,所以.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据正切函数定义计算【详解】由题意故答案为:12、【解析】根据复合函数单调性性质将问题转化二次函数单调性问题,注意真数大于0.【详解】令,则,因为为减函数,所以在上单调递增等价于在上单调递减,且,即,解得.故答案为:13、或【解析】把分式不等式转化为,从而可解不等式.【详解】因为,所以,解得或,所以不等式的解集是或.故答案为:或.14、【解析】写出该命题的否定命题,根据否定命题求出的取值范围即可【详解】解:命题“,有”是假命题,它否定命题是“,有”,是真命题,即,恒成立,所以,因为,在上单调递减,上单调递增,又,,所以所以,的最小值为,故答案为:15、【解析】利用相位变换直接求得.【详解】按照相位变换,把函数y=sinx的图象上的所有点向右平移个单位长度,得到.故答案为:.16、4【解析】设出扇形的半径,求出扇形的弧长,利用周长公式,求出半径,然后求出扇形的面积【详解】设扇形的半径为:R,所以2R+2R=8,所以R=2,扇形的弧长为:4,半径为2,扇形的面积为:4(cm2)故答案为4【点睛】本题是基础题,考查扇形的面积公式的应用,考查计算能力三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)选择函数更合适,解析式为(2)11个单位【解析】(1)将,和,分别代入两种模型求解解析式,再根据时的值估计即可;(2)根据题意,进而结合对数运算求解即可.【小问1详解】若选,将,和,代入得,解得得将代入,,不符合题意若选,将,和,代入得,解得得将代入得,符合题意综上:所以选择函数更合适,解析式为【小问2详解】解:设至少需要个单位时间,则,即两边取对数:因为,所以的最小值为11至少经过11个单位时间不少于1亿个18、(1)证明见解析;(2)最大值为;小值为【解析】(1)利用单调性的定义,任取,且,比较和0即可得单调性;(2)由函数的单调性即可得函数最值.试题解析:(1)解:在区间上是增函数.证明如下:任取,且,.∵,∴,即.∴函数在区间上是增函数.(2)由(1)知函数在区间上是增函数,故函数在区间上的最大值为,最小值为.点睛:本题考查利用函数的奇偶性求函数解析式,判断并证明函数的单调性,属于中档题目.证明函数单调性的一般步骤:(1)取值:在定义域上任取,并且(或);(2)作差:,并将此式变形(要注意变形到能判断整个式子符号为止);(3)定号:和0比较;(4)下结论19、(1);(2)见详解2.【解析】(1)由可得,再求值.(2)设,作差与零比较.【小问1详解】因为是定义在上的奇函数,所以,,,【小问2详解】设,则,,,,所以,,故在定义域上为增函数.20、(1)(2)证明见解析(3)【解析】(1)根据得到,验证得到答案.(2)证明的单调性,再根据复合函数的单调性得到答案.(3)确定单调递增,再计算最小值得到答案.【小问1详解】,,,即,故,,当时,,不成立,舍去;当时,,验证满足.综上所述:.【小问2详解】,函数定义域为,考虑,设,则,,,故,函数单调递减.在上单调递减,根据复合函数单调性知在内单调递增.【小问3详解】,即,为增函数.故在单调递增,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钢结构幕墙系统施工技术方案
- 湖北省宜昌市高三上学期1月质量检测语文试题【含答案详解】
- 工地施工模具管理方案
- 工地劳务分包管理与协调方案
- 隧道施工阶段性总结方案
- 施工环节文化建设与费用管理方案
- 工地雨季施工应对方案
- 地下管网施工交通疏导方案
- 2026年智能蓝牙香氛机项目营销方案
- 2026年稀疏计算专用芯片项目评估报告
- 别墅浇筑施工方案(3篇)
- 小学信息技术教学备课全流程解析
- 肿瘤放射治疗的新技术进展
- 退岗修养协议书范本
- 高考语文二轮复习高中语文逻辑推断测试试题附解析
- 土壤微生物群落结构优化研究
- 2024外研版四年级英语上册Unit 4知识清单
- 四川省南充市2024-2025学年部编版七年级上学期期末历史试题
- 国有企业三位一体推进内控风控合规建设的问题和分析
- 2025年高二数学建模试题及答案
- 储能集装箱知识培训总结课件
评论
0/150
提交评论