2026届福建龙岩一中数学高二上期末检测模拟试题含解析_第1页
2026届福建龙岩一中数学高二上期末检测模拟试题含解析_第2页
2026届福建龙岩一中数学高二上期末检测模拟试题含解析_第3页
2026届福建龙岩一中数学高二上期末检测模拟试题含解析_第4页
2026届福建龙岩一中数学高二上期末检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届福建龙岩一中数学高二上期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,,,为所在平面上任意一点,则的最小值为()A.1 B.C.-1 D.-22.函数的大致图象是()A. B.C. D.3.,则与分别为()A.与 B.与C.与0 D.0与4.在数列中,,则()A. B.C.2 D.15.如图,用随机模拟方法近似估计在边长为e(e为自然对数的底数)的正方形中阴影部分的面积,先产生两组区间上的随机数和,因此得到1000个点对,再统计出落在该阴影部分内的点数为260个,则此阴影部分的面积约为()A.0.70 B.1.04C.1.86 D.1.926.如图所示,在平行六面体中,,,,点是的中点,点是上的点,且,则向量可表示为()A. B.C. D.7.已知在四棱锥中,平面,底面是边长为4的正方形,,E为棱的中点,则直线与平面所成角的正弦值为()A. B.C. D.8.对于圆上任意一点的值与x,y无关,有下列结论:①当时,r有最大值1;②在r取最大值时,则点的轨迹是一条直线;③当时,则.其中正确的个数是()A.3 B.2C.1 D.09.函数在(0,e]上的最大值为()A.-1 B.1C.0 D.e10.在空间直角坐标系中,为直线的一个方向向量,为平面的一个法向量,且,则()A. B.C. D.11.已知,则的大小关系为()A. B.C. D.12.若构成空间向量的一组基底,则下列向量不共面的是()A.,, B.,,C.,, D.,,二、填空题:本题共4小题,每小题5分,共20分。13.已知单位空间向量,,满足,.若空间向量满足,且对于任意实数,的最小值是2,则的最小值是___________.14.已知数列满足:,且,记,若,则___________.(用表示)15.等差数列的公差,是其前n项和,给出下列命题:若,且,则和都是中的最大项;给定n,对于一些,都有;存在使和同号;.其中正确命题的序号为___________.16.已知圆,圆与轴相切,与圆外切,且圆心在直线上,则圆的标准方程为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,PA=2AD=4,且PC=.点E在PC上.(1)求证:平面BDE⊥平面PAC;(2)若E为PC的中点,求直线PC与平面AED所成的角的正弦值.18.(12分)同时掷两颗质地均匀的骰子(六个面分别标有数字1,2,3,4,5,6的正方体)(1)求两颗骰子向上的点数相等的概率;(2)求两颗骰子向上的点数不相等,且一个点数是另一个点数的整数倍的概率19.(12分)为了符合国家制定的工业废气排放标准,某工厂在国家科研部门的支持下,进行技术攻关,采用新工艺,对其排放的废气中的二氧化硫转化为一种可利用的化工产品.已知该工厂每月的处理量最少为300吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化硫得到可利用的化工产品价值为200元(1)该工厂每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该工厂每月能否获利?如果获利,求出最大利润:如果不获利,则国家每月至少应补贴多少元才能使工厂不亏损?20.(12分)已知命题:,在下面①②中任选一个作为:,使为真命题,求出实数a的取值范围.①关于x的方程有两个不等正根;②.(若选①、选②都给出解答,只按第一个解答计分.)21.(12分)已知抛物线过点.(1)求抛物线方程;(2)若直线与抛物线交于两点两点在轴的两侧,且,求证:过定点.22.(10分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD//BC,AB=BC=CD=1,AD=2,直线BC与平面PCD所成角的正弦值为.(1)求证:平面PCD⊥平面PAC;(2)求平面PAB与平面PCD所成锐二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】以为建立平面直角坐标系,设,把向量的数量积用坐标表示后可得最小值【详解】如图,以为建立平面直角坐标系,则,设,,,,,∴,∴当时,取得最小值故选:C【点睛】本题考查向量的数量积,解题方法是建立平面直角坐标系,把向量的数量积转化为坐标表示2、A【解析】由得出函数是奇函数,再求得,,运用排除法可得选项.【详解】法一:由函数,则,所以函数为奇函数,图象关于原点对称,所以排除B;因为,所以排除D;因为,所以排除C,故选:A.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.3、C【解析】利用正弦函数和常数导数公式,结合代入法进行求解即可.【详解】因为,所以,所以,,故选:C4、A【解析】利用条件可得数列为周期数列,再借助周期性计算得解.【详解】∵∴,,所以数列是以3为周期的周期数列,∴,故选:A.5、D【解析】根据几何概型的概率公式即可直接求出答案.【详解】易知,根据几何概型的概率公式,得,所以.故选:D.6、D【解析】根据空间向量加法和减法的运算法则,以及向量的数乘运算即可求解.【详解】解:因为在平行六面体中,,,,点是的中点,点是上的点,且,所以,故选:D.7、B【解析】建立空间直角坐标系,以向量法去求直线与平面所成角的正弦值即可.【详解】平面,底面是边长为4的正方形,则有,而,故平面,以A为原点,分别以AB、AD、AP所在直线为x轴、y轴、z轴建立空间直角坐标系如图:则,,,设直线与平面所成角为,又由题可知为平面的一个法向量,则故选:B8、B【解析】可以看作点到直线与直线距离之和的倍,的取值与,无关,这个距离之和与点在圆上的位置无关,圆在两直线内部,则,的距离为,则,,对于①,当时,r有最大值1,得出结论;对于②在r取最大值时,则点的轨迹是一条平行与,的直线,得出结论;对于③当时,则得出结论.【详解】设,故可以看作点到直线与直线距离之和的倍,的取值与,无关,这个距离之和与点在圆上的位置无关,可知直线平移时,点与直线,的距离之和均为,的距离,即此时圆在两直线内部,,的距离为,则,对于①,当时,r有最大值1,正确;对于②在r取最大值时,则点的轨迹是一条平行与,的直线,正确;对于③当时,则即,解得或,故错误.故正确结论有2个,故选:B.9、A【解析】对函数求导,然后求出函数的单调区间,从而可求出函数的最大值【详解】由,得,当时,,当,,所以在上单调递增,在上单调递减,所以当时,取得最大值,故选:A10、B【解析】由已知条件得出,结合空间向量数量积的坐标运算可求得实数的值.【详解】因为,则,解得.故选:B.11、B【解析】构造利用导数判断函数在上单调递减,利用单调性比较大小【详解】设恒成立,函数在上单调递减,.故选:B12、C【解析】根据空间向量共面的条件即可解答.【详解】对于A,由,所以,,共面;对于B,由,所以,,共面;对于D,,所以,,共面,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】以,方向为轴,垂直于,方向为轴建立空间直角坐标系,根据条件求得坐标,由二次函数求最值即可求得最小值.【详解】以,方向为轴,垂直于,方向为轴建立空间直角坐标系,则,由可设,由是单位空间向量可得,由可设,,当,的最小值是2,所以,取,,,当时,最小值为.故答案为:.14、【解析】由可得,结合已知条件,利用裂项相消求和法即可得答案.【详解】解:因为,所以,即,所以,因为,所以,又,所以.故答案为:.15、【解析】对,根据数列的单调性和可判断;对和,利用等差数列的通项公式可直接推导;对,利用等差数列的前项和可直接推导.【详解】不妨设等差数列的首项为对,,可得:,解得:,即又,则是递减的,则中的前5项均为正数,所以和都是中的最大项,故正确;对,,故有:,故正确;对,,又,则,说明不存在使和同号,故错误;对,有:故并不是恒成立的,故错误故答案为:16、【解析】根据题干求得圆的圆心及半径,再利用圆与轴相切,与圆外切,且圆心在直线上确定圆的圆心及半径.【详解】圆的标准方程为,所以圆心,半径为由圆心在直线上,可设因为与轴相切,与圆外切,于是圆的半径为,从而,解得因此,圆的标准方程为故答案为:【点睛】判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法.两圆相切注意讨论内切外切两种情况.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】(1)根据题意可判断出ABCD是正方形,从而可得,再根据,由线面垂直的判定定理可得平面PAC,然后由面面垂直的判定定理即可证出;(2)由、、两两垂直可建立空间直角坐标系,利用向量法即可求出直线PC与平面AED所成的角的正弦值.【小问1详解】因为PA⊥底面ABCD,PA=2AD=4,PC=,所以,,即ABCD是正方形,所以,而PA⊥底面ABCD,所以,又,所以平面PAC,而平面BDE,所以平面BDE⊥平面PAC【小问2详解】由题可知、、两两垂直,建系如图,,0,,,2,,,0,,,2,,,1,,,,,,1,,,2,,设平面的一个法向量为,则,,即,取,0,,所以直线与平面所成的角的正弦值为18、(1);(2).【解析】(1)求出同时掷两颗骰子的基本事件数、及骰子向上的点数相等的基本事件数,应用古典概型的概率求法,求概率即可.(2)列举出两颗骰子向上的点数不相等,且一个点数是另一个点数的倍数的基本事件,应用古典概型的概率求法,求概率即可.【小问1详解】同时掷两颗骰子包括的基本事件共种,掷两颗骰子向上的点数相等包括的基本事件为6种,故所求的概率为;【小问2详解】两颗骰子向上的点数不相等,且一个点数是另一个点数的倍数时,用坐标记为,,,,,,,,,,,,,,,,共包括16个基本事件,故两颗骰子向上的点数不相等,且一个点数是另一个点数的倍数有的概率为.19、(1)600吨(2)该工厂不获利,且需要国家每月至少补贴52500元才能使工厂不亏损【解析】(1)设该工厂每吨平均处理成本为z,,利用基本不等式求最值可得答案;(2)设该工厂每月的利润为,利用配方求最值可得答案.【小问1详解】设该工厂每吨平均处理成本为z,,∴,当且仅当,即时取等号,当时,每吨平均处理成本最低.【小问2详解】设该工厂每月的利润为,则,∴,当时,,所以该工厂不获利,且需要国家每月至少补贴52500元才能使工厂不亏损.20、答案见解析【解析】根据题意,分析、为真时的取值范围,又由复合命题真假的判断方法可得、都是真命题,据此分析可得答案.【详解】解:选①时由知在上恒成立,∴,即又由q:关于x的方程有两个不等正根,知解得,由为真命题知,解得.实数a的取值范围.选②时由知在上恒成立,∴,即又由,知在上恒成立,∴,又,当且仅当时取“=”号,∴,由为真命题知,解得.实数a的取值范围.21、(1);(2)证明见解析.【解析】(1)运用代入法直接求解即可;(2)设出直线的方程与抛物线方程联立,结合一元二次方程根与系数关系、平面向量数量积的坐标表示公式进行求解即可.【小问1详解】由已知可得:;【小问2详解】的斜率不为设,,∴OA→⋅因为直线与抛物线交于两点两点在轴的两侧,所以,即过定点.【点睛】关键点睛:运用一元二次方程根与系数关系是解题的关键.22、(1)证明见解析(2)【解析】(1)取的中点,连接,证明,由线面垂直的判定定理可证明平面,再利用面面垂直的判定定理可证得结论,(2)过点作于,以为原点,建立空间直角坐标系,如图所示,设,先根据直线BC与平面PCD所成角的正弦值为,求出,然后再求出平面PAB的法向量,利用向

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论