近五年甘肃中考数学真题及答案2025_第1页
近五年甘肃中考数学真题及答案2025_第2页
近五年甘肃中考数学真题及答案2025_第3页
近五年甘肃中考数学真题及答案2025_第4页
近五年甘肃中考数学真题及答案2025_第5页
已阅读5页,还剩87页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年甘肃中考数学试题及答案注意事项:1.全卷共120分.考试时间120分钟.2.考生必须将姓名、准考证号、考场号、座位号等个人信息填(涂)写在试卷及答题卡上.3.考生务必将答案直接填(涂)写在答题卡的相应位置上.4.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共11小题,每小题3分,共33分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中,最小的数是(

)A. B.0 C.1 D.22.计算:(

)A.6 B. C. D.13.如图是集热板示意图,集热板与太阳光线垂直时,光能利用率最高.春分日兰州正午太阳光线与水平面的夹角为.若光能利用率最高,则集热板与水平面夹角度数是(

)A. B. C. D.4.如图,在平面直角坐标系中,与位似,位似中心是原点O,已知,则的对应点的坐标是(

)A. B. C. D.5.图1是通过平面图形的镶嵌所呈现的图案,图2是其局部放大示意图,由正六边形、正方形和正三角形构成,它的轮廓为正十二边形,则图2中的大小是(

)A. B. C. D.6.若关于x的一元二次方程有两个不相等的实数根,则a的值可以是(

)A.3 B.2 C.1 D.07.若点与在反比例函数的图象上,则与的大小关系是(

)A. B. C. D.8.现有甲、乙两个不透明盒子,其中甲盒装有分别写着d,t,l的三张声母卡片,乙盒装有分别写着a,e,i的三张韵母卡片(卡片除汉语拼音字母外,其余完全相同),若小明分别从甲、乙盒中随机各抽取一张卡片,则两张卡片刚好拼成“德”字读音的概率是(

)A. B. C. D.9.《九章算术》是中国传统数学最重要的数学著作之一,“方程章”第11题大意是:两匹马一头牛总价超过1万,超过部分等于半匹马的价格;一匹马两头牛的总价不足1万,不足部分等于半头牛的价格,问一匹马、一头牛的价格分别是多少?若设一匹马价格为x,一头牛价格为y,则可列方程组为(

)A. B.C. D.10.如图,四边形是矩形,对角线相交于点O,点E,F分别在边上,连接交对角线于点P.若P为的中点,,则(

)A. B. C. D.11.如图,在正方形中,,对角线相交于点O,动点P从点O出发沿方向以的速度运动,同时点Q从点C出发沿方向以的速度运动,当点Q到达点D时,P,Q同时停止运动.若运动时间为x(s),的面积为,则点P分别在上运动时,y与x的函数关系分别是(

)A.均为一次函数 B.一次函数,二次函数C.均为二次函数 D.二次函数,一次函数二、填空题(本大题共4小题,每小题3分,共12分)12.因式分解:.13.射箭运动项目中,新手成绩通常不太稳定.甲和乙同时进行12次射箭练习后,成绩的统计数据如下表,请根据表中信息估计新手是.(填写“甲”或“乙”)甲乙平均成绩(单位:环)6.587.67方差6.910.7214.如图,在菱形中,,垂足为E,交于点F,.若,则.15.如图,黄金矩形中,以宽为边在其内部作正方形,得到四边形是黄金矩形,依此作法,四边形,四边形也是黄金矩形.依次以点E,G,L为圆心作,,,曲线叫做“黄金螺线”.若,则“黄金螺线”的长为.(结果用表示)三、解答题(本大题共11小题,共75分.解答时写出必要的文字说明、证明过程或演算步骤)16.计算:.17.解方程:.18.解不等式组:.19.如图,在平面直角坐标系中,一次函数与反比例函数的图象相交于点,与x轴相交于点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)点P为y轴负半轴上一点,连接.若的面积为6,求点P的坐标.20.天文学家运用三角函数解决了曾困扰古人数百年的难题.某天文研究小组探究用三角函数知识计算月球与地球之间距离的方法,通过查阅资料、实际观测、获得数据和计算数据,得出月球与地球之间的近似距离.具体研究方法与过程如下表:问题月球与地球之间的距离约为多少?工具天文望远镜、天文经纬仪等月球、地球的实物图与平面示意图说明为了便于观测月球,在地球上先确定两个观测点A,B,以线段作为基准线,再借助天文经纬仪从A,B两点同时观测月球P(将月球抽象为一个点),并测得和的度数.根据实际问题画出平面示意图(如上图),过点P作于点H,连接,.数据万千米,,.根据以上信息,求月球与地球之间的近似距离.(结果精确到1万千米)(参考数据:,,,,,)21.综合与实践在学校项目化学习中,某研究小组开展主题为“生长素浓度对植物种子发芽率的影响”的研究.请你阅读以下材料,解决“数学建模”中的问题.【研究背景】已知一定浓度的生长素既能促进种子发芽,也会因浓度过高抑制种子发芽.探索生长素使用的适宜浓度等最优化问题,可以借助数学模型进行解决.【数据收集】研究小组选择某类植物种子和生长素,以生长素浓度x(标准单位)为自变量,种子的发芽率y(%)为因变量,进行“生长素浓度对植物种子发芽率的影响”的实验,获得相关数据:生长素浓度:x(标准单位)00.611.722.52.733.344.2发芽率y(%)35.0049.2856.0062.3763.0061.2559.5756.0051.1735.0029.12【数据分析】如图,小组成员以表中各组对应值作为点的坐标,在平面直角坐标系中描出相应的点.说明:①当生长素浓度时,种子的发芽率为自然发芽率;②当发芽率大于等于零且小于自然发芽率时,该生长素抑制种子发芽;③当生长素抑制种子发芽,使得发芽率减小到0时,停止实验.【数学建模】请你结合所学知识解决下列问题:(1)观察上述各点的分布规律,判断y关于x的函数类型,并求出该函数的表达式;(2)请计算抑制种子发芽时的生长素浓度范围.22.“三等分角”是两千多年来数学史上最著名的古典四大问题之一,阿基米德等数学家通过巧妙的几何作图得到了解决“三等分角”问题的特例方法.某数学兴趣小组通过折纸与尺规作图相结合的方法探究“三等分锐角”问题的解法,解决过程如下:操作步骤与演示图形如图①,已知一个由正方形纸片的边PK与经过顶点P的直线构成的锐角.按照以下步骤进行操作:任意折出一条水平折痕,与纸片左边交点为Q;再折叠将PK与重合得到折痕,与纸片左边交点为N,如图②.→折叠使点Q,P分别落在和上,得到折痕m,对应点为,,m交于M,如图③④.→保持纸片折叠,再沿MN折叠,得到折痕的一部分,如图⑤.→将纸片展开,再沿折叠得到经过点P的完整折痕,如图⑥.→将纸片折叠使边PK与重合,折痕为.则直线和就是锐角的三等分线,如用⑦⑧.解决问题(1)请依据操作步骤与演示图形,通过尺规作图完成以下两个作图任务:(保留作图痕迹.不写作法)任务一:在图③中,利用已给定的点作出点;任务二:在图⑥中作出折痕.(2)若锐角为,则图⑤中与相交所成的锐角是__________.23.豌豆荚里有几粒豆子不确定,那么豆子粒数是否有规律?同学们对这个问题很感兴趣.为此,调查小组从一批豌豆荚中随机抽取了若干个豌豆荚,进行豆子粒数的统计,以下是本次调查的过程.【收集数据】打开每个豌豆荚,数清其中的豆子(直径大于3毫米)粒数,记录数据.【整理数据】将收集的豆子粒数进行数据整理,用x表示每个豌豆荚中的豆子粒数,将数据分为5类:其中A类(),B类(),C类(),D类(),E类().【描述数据】根据整理的数据,绘制出如下统计图.【分析数据】根据以上信息,解答下列问题:(1)本次调查活动中随机抽取了__________个豌豆荚,图中__________,__________;(2)所调查豆子粒数的中位数落在__________类中;(只填写字母)(3)如果甲同学调查了20个豌豆荚,其中B类有7个,乙同学调查了10个豌豆荚,其中D类有3个.能否得到B类豌豆荚一定比D类豌豆荚多的规律?请说明理由.24.如图,是的外接圆,是的直径,过点B的切线交的延长线于点D,连接并延长,交于点E,连接.(1)求证:;(2)若,,求的长.25.【提出问题】数学讨论课上,小明绘制图1所示的图形,正方形与正方形(),点E,G分别在上,根据图形提出问题:如图2,正方形绕点B顺时针旋转,旋转角为,直线与相交于点H,连接,探究线段,,之间的数量关系.【解决问题】(1)小明将上述问题特殊化,如图3,当点G,H重合时,请你写出,,之间的数量关系,并说明理由;(2)小明借鉴(1)中特殊化的解题策略后,再解决图2所示的一般化问题,当点G,H不重合时,请你写出,,之间的数量关系,并说明理由;【拓展问题】(3)小明将图2所示问题中的旋转角的范围再扩大,正方形绕点B顺时针旋转,旋转角为,直线与相交于点H,连接,请直接写出,,之间的数量关系.26.在平面直角坐标系中,对于图上或内部有一点(不与原点重合),及平面内一点,给出如下定义:若点关于直线的对称点在图上或内部,则称点是图的“映射点”.(1)如图1,已知图:线段,,.在,中,__________是图的“映射点”;(2)如图2,已知图:正方形,,,,.若直线:上存在点是图的“映射点”,求的最大值;(3)如图3,已知图:,圆心为,半径为.若轴上存在点是图的“映射点”,请直接写出的取值范围.1.A【分析】本题考查了有理数大小的比较:负数小于一切非负数,明确此性质是关键.根据正数大于0,0大于负数,即可作出判断.【详解】解:∵,∴最小的数是,故选:A.2.B【分析】本题考查二次根式的乘法运算,熟练掌握运算法则是解题的关键.根据二次根式的乘法运算法则计算即可.【详解】解:,故选:B.3.C【分析】本题考查了垂直的定义,余角的性质.由题意得,代入数据计算即可求解.【详解】解:∵集热板与太阳光线垂直,∴,∵,∴,故选:C.4.B【分析】本题考查的是位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为,那么位似图形对应点的坐标的比等于或.根据位似变换的性质解答即可.【详解】解:∵与位似,位似中心是原点O,∴位似比为,∵,∴,即,故选:B.5.D【分析】本题考查了正多边形的内角和.根据正三角形的每个内角为,正方形的每个内角为,求解即可.【详解】解:正三角形的每个内角为,正方形的每个内角为,∴,故选:D.6.D【分析】根据一元二次方程根的判别式,当判别式大于0时,方程有两个不相等的实数根.将方程化为标准形式后,计算判别式并解不等式即可确定a的取值范围.熟练掌握一元二次方程根的判别式是解题的关键.【详解】解:对于方程,其判别式为,∵方程有两个不相等的实数根,∴,即,解得.故选:D.7.C【分析】本题考查了反比例函数的图象和性质,根据,反比例函数图象分布在一、三象限,当时,当时,进行判断即可求解,掌握反比例函数的图象和性质是解题的关键.【详解】解:∵,∴反比例函数图象分布在一、三象限,当时,当时,∵,∴,即,故选:.8.A【分析】本题主要考查了列表法或树状图法求概率等知识点,用列表法或树状图法列举出所有等可能出现的结果,再根据概率的定义进行计算即可,熟练掌握列表法或树状图法求概率的方法是解决此题的关键.【详解】解:将所有结果列表格如下:声母

韵母aeiddadedittatetillaleli所有可能的组合为9种,符合条件的情况仅1种,故两张卡片刚好拼成“德”字读音de的概率为.故选:A.9.A【分析】此题考查了二元一次方程组的应用,解题的关键是正确分析题目中的等量关系.设每匹马的价格为x钱,每头牛的价格为y钱,根据题意列出方程即可.【详解】解:设每匹马的价格为x,每头牛的价格为y,根据题意可得,.故选A.10.C【分析】本题考查了矩形的性质,直角三角形斜边中线的性质,等边对等角.根据矩形的性质求得,利用斜边中线的性质求得,求得,利用三角形内角和定理以及对顶角相等即可求解.【详解】解:∵四边形是矩形,∴,,∵,∴,∵,P为的中点,∴,∴,∴,∴,故选:C.11.D【分析】本题考查了正方形的性质,勾股定理,二次函数的定义.当点P在上运动时,由题意得,,作于点,求得,利用列式计算即可;当点P在上运动时,利用三角形面积公式求解即可.【详解】解:∵正方形中,,∴,∴,,当点P在上运动时,由题意得,,作于点,∵,∴,∴,是二次函数;当点P在上运动时,由题意得,∴,是一次函数;故选:D.12.【分析】本题考查了提公因式法与公式法的综合运用.先提取公因式,再利用完全平方公式即可.【详解】解:.故答案为:.13.甲【分析】本题考查了方差的意义,方差越大,成绩越不稳定.根据图形可知,甲的射击不稳定,可判断新手是甲.【详解】解:根据表中信息可以看出,甲平均成绩较差,且方差更大,方差越大,成绩越不稳定,新手是甲.故答案为:甲.14.4【分析】根据菱形的性质,得,又结合,,得出是等边三角形,就可以得知和都是含的直角三角形,解出三角形,即可求出的长.【详解】解:连接,,,,垂直平分,,菱形,,是等边三角形,,,,,,.故答案为:4.【点睛】本题考查了菱形的性质、垂直平分线的性质、等边三角形的判定与性质以及解直角三角形,熟练掌握这些性质定理是关键.15.【分析】本题主要考查了黄金矩形的定义,及弧长公式.先根据黄金矩形中,且,求出,进而求出,,再根据弧长公式即可求出“黄金螺线”的长.根据黄金矩形的定义求出的长,以及熟练掌握弧长的公式是解题的关键.【详解】解:∵黄金矩形中,且,∴,∵四边形是正方形,,,∵四边形是正方形,,,,∵四边形是正方形,,∴“黄金螺线”的长为,.故答案为:.16.【分析】本题考查了整式的混合运算.先计算平方差和单项式乘多项式,再合并同类项即可.熟练掌握整式的运算法则是解题的关键.【详解】解:.17.【分析】解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【详解】解:,去分母,得,去括号,得,移项,得,合并同类项,得:,经检验,是原方程的解.【点睛】本题考查的是解分式方程,掌握分式方程的解法是解题的关键.18..【分析】本题考查的是解一元一次不等式组.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集即可.【详解】解:解不等式得,解不等式得,∴不等式组的解集为.19.(1)一次函数解析式为:;反比例函数解析式为:;(2)点P的坐标为.【分析】本题考查一次函数与反比例函数的综合应用:(1)待定系数法求出函数解析式即可;(2)先求出点坐标,利用三角形面积公式,列出方程求解即可.【详解】(1)解:∵点在一次函数图象上,∴,解得,∴一次函数解析式为:;∵点在一次函数图象上,∴,解得,∴点,∵点在反比例函数图象上,∴∴反比例函数解析式为:;(2)解:∵,∴当时,,∴,由题意得,解得,∵点P为y轴负半轴上一点,∴,∴点P的坐标为.20.月球与地球之间的近似距离万千米.【分析】本题考查了解直角三角形的应用.设万千米.在和中,分别用表示和的长,再根据万千米,列式计算即可求解.【详解】解:设万千米.在中,,∴,∴,在中,,∴,∴,∵万千米,∴,整理得,解得,∴月球与地球之间的近似距离为38万千米.21.(1)y关于x的函数是二次函数,;(2).【分析】本题考查了二次函数的应用.(1)先判断出y关于x的函数是二次函数,再利用待定系数法求解即可;(2)先计算出种子自然发芽率为35,令和时,分别求得x的值,再结合图象求解即可.【详解】(1)解:观察上述各点的分布规律,y关于x的函数是二次函数,设该二次函数的解析式为,将,,代入得,,解得,∴该二次函数的解析式为;(2)解:当时,,∴种子自然发芽率为35,∴当时,,解得,,当时,,解得(舍去),,∴抑制种子发芽时的生长素浓度范围为.22.(1)见解析;(2)50【分析】本题考查轴对称图形的性质,尺规作图——作垂直平分线,作角平分线,平行线的性质,读懂题意是解题的关键.(1)任务一:连接,作的垂直平分线m,过点P作直线m的垂线,交边于点A,以点A为圆心,的长为半径作弧,交直线于点,则点为所求;任务二:作出与所成夹角的角平分线,即为折痕;(2)根据三等分线得到,再由平行线的性质即可求解.【详解】解:(1)任务一:如图,点为所求.任务二:如图,折痕为所求.(2)如图,由题意可知,是的三等分线,∴,∵,∴,∴与相交所成的锐角是.故答案为:5023.(1),,(2)C(3)不能,理由见解析【分析】此题考查了条形统计图和扇形统计图的信息关联,样本估计总体,中位数等知识,熟练样本估计总体,中位数是关键.(1)根据B类的数量和对应的百分比即可求出总数,再根据对应的百分比和总量减部分即可求出答案;(2)根据中位数的定义进行判断即可;(3)根据选取样本的特点进行分析即可.【详解】(1)解:由题意可得,(个),,故答案为:(2)由题意可得中位数是从小到大排列后,第50和51个数据的平均数,∵,∴所调查豆子粒数的中位数落在C类中;故答案为:C(3)不能,理由是:样本容量太小,样本不具有代表性,且两个样本容量不一样,没有可比性.24.(1)见解析(2).【分析】(1)由切线的性质求得,由圆周角定理求得,利用同角的余角相等求得,再利用圆周角定理即可证明结论成立;(2)由(1)得,求得,求得,利用勾股定理求得,证明,求得,据此求解即可.【详解】(1)证明:∵是的切线,∴,∵是的直径,∴,∴,∵,∴,∴;(2)解:由(1)得,∴,∴,∵,∴,∴,∵,,∴,∴,即,解得,∴,∵,∴.【点睛】本题考查了解直角三角形,相似三角形的判定和性质,勾股定理,圆周角定理,切线的性质.熟练掌握相关知识的联系与运用是解答的关键.25.(1),理由见解析;(2),理由见解析;(3),理由见解析【分析】(1)利用正方形的性质求得,证明,推出,根据即可求解;(2)在上截取,证明,推出,,证明是等腰直角三角形,求得,根据,即可求得;(3)在上截取,证明,得到,,同理,得到是等腰直角三角形,求得,根据,即可求得.【详解】解:(1),理由如下,如图,当点G,H重合时,∵正方形与正方形,∴,,,,∴,,∴,∴,∴;(2),理由如下,由(1)得,∴,在上截取,∵,,∴,∴,,∵,,∴,∴,∴是等腰直角三角形,∴,∵,∴;(3),理由如下,由(1)得,∴,,在上截取,∵,,∴,∴,,同理,是等腰直角三角形,∴,∵,∴.【点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,旋转的性质,勾股定理,等腰直角三角形的判定和性质等知识点,作出辅助线,证明三角形全等是解本题的关键.26.(1)(2)(3)【分析】本题考查了新定义,轴对称的性质,直线与圆的位置关系,切线长定理的应用,一次函数与结合图形,熟练掌握轴对称的性质,找到临界值是解题的关键;(1)根据定义,观察,,经过对称后,判断对称点是否在上,即可求解;(2)根据正方形的顶点到的距离为,则对称之前的点到原点的距离为,进而求得的最大值,将代入得,,即可求解;(3)根据新定义,找到临界值,即为的切线时的情形,求得的值,即可求解.【详解】(1)解:如图,当重合时,关于的对称点为,在线段上∴是图的“映射点”;而关于的对称点不在上,则不是图的“映射点”;故答案为:.(2)解:依题意,正方形的顶点到的距离为,∴当上存在点是图的“映射点”,则点到的距离为∴当经过点时,的值最大,将代入得,解得:,∴的最大值;(3)解:如图,分别为的切线,当为的“映射点”,∴,又∵,设,则∴∴解得:∴,∵,∴,当减小时,关于的“映射点”,在即的内部,符合题意,∴当时,根据对称性可得综上所述,.

2024年甘肃中考数学试题及答案考生注意:本试卷满分为150分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.下列各数中,比小的数是()A. B. C.4 D.12.如图所示,该几何体的主视图是()A. B. C. D.3.若,则的补角为()A. B. C. D.4.计算:()A.2 B. C. D.5.如图,在矩形中,对角线,相交于点O,,,则的长为()A.6 B.5 C.4 D.36.如图,点A,B,C在上,,垂足为D,若,则的度数是()A. B. C. D.7.如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x尺,长桌的长为y尺,则y与x的关系可以表示为()A. B. C. D.8.近年来,我国重视农村电子商务发展.下面的统计图反映了2016—2023年中国农村网络零售额情况.根据统计图提供的信息,下列结论错误的是()A.2023年中国农村网络零售额最高B.2016年中国农村网络零售额最低C2016—2023年,中国农村网络零售额持续增加D.从2020年开始,中国农村网络零售额突破20000亿元9.敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为,那么有序数对记为对应的田地面积为()A.一亩八十步 B.一亩二十步 C.半亩七十八步 D.半亩八十四步10.如图1,动点P从菱形的点A出发,沿边匀速运动,运动到点C时停止.设点P的运动路程为x,的长为y,y与x的函数图象如图2所示,当点P运动到中点时,的长为()A2 B.3 C. D.二、填空题:本大题共6小题,每小题4分,共24分.11.因式分解:________.12.已知一次函数,当自变量时,函数y的值可以是________(写出一个合理的值即可).13.定义一种新运算*,规定运算法则为:(m,n均为整数,且).例:,则________.14.围棋起源于中国,古代称为“弈”.如图是两位同学的部分对弈图,轮到白方落子,观察棋盘,白方如果落子于点________的位置,则所得的对弈图是轴对称图形.(填写A,B,C,D中的一处即可,A,B,C,D位于棋盘的格点上)15.如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y(单位:)与距离停车棚支柱的水平距离x(单位:)近似满足函数关系的图象,点在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长,高的矩形,则可判定货车________完全停到车棚内(填“能”或“不能”).16.甘肃临夏砖雕是一种历史悠久的古建筑装饰艺术,是第一批国家级非物质文化遗产.如图1是一块扇面形的临夏砖雕作品,它的部分设计图如图2,其中扇形和扇形有相同的圆心O,且圆心角,若,,则阴影部分的面积是______.(结果用π表示)三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17.计算:.18.解不等式组:19.先化简,再求值:,其中,.20.马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知和圆上一点M.作法如下:①以点M为圆心,长为半径,作弧交于A,B两点;②延长交于点C;即点A,B,C将的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接,,,若的半径为,则的周长为______.21.在一只不透明的布袋中,装有质地、大小均相同的四个小球,小球上分别标有数字1,2,3,4.甲乙两人玩摸球游戏,规则为:两人同时从袋中随机各摸出1个小球,若两球上的数字之和为奇数,则甲胜;若两球上的数字之和为偶数,则乙胜.(1)请用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲乙双方公平吗?请说明理由.22.习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒垂直于地面,测角仪,在两侧,,点C与点E相距(点C,H,E在同一条直线上),在D处测得简尖顶点A的仰角为,在F处测得筒尖顶点A的仰角为.求风电塔筒的高度.(参考数据:,,.)四、解答题:本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.23.在阳光中学运动会跳高比赛中,每位选手要进行五轮比赛,张老师对参加比赛的甲、乙、丙三位选手的得分(单位:分,满分10分)进行了数据的收集、整理和分析,信息如下:信息一:甲、丙两位选手的得分折线图:信息二:选手乙五轮比赛部分成绩:其中三个得分分别;信息三:甲、乙、丙三位选手五轮比赛得分的平均数、中位数数据如下:选手统计量甲乙丙平均数m中位数n根据以上信息,回答下列问题:(1)写出表中m,n的值:_______,_______;(2)从甲、丙两位选手的得分折线图中可知,选手_______发挥的稳定性更好(填“甲”或“丙”);(3)该校现准备推荐一位选手参加市级比赛,你认为应该推荐哪位选手,请说明理由.24.如图,在平面直角坐标系中,将函数的图象向上平移3个单位长度,得到一次函数的图象,与反比例函数的图象交于点.过点作x轴的平行线分别交与的图象于C,D两点.(1)求一次函数和反比例函数的表达式;(2)连接,求的面积.25.如图,是的直径,,点E在的延长线上,且.(1)求证:是的切线;(2)当的半径为2,时,求的值.26.【模型建立】(1)如图1,已知和,,,,.用等式写出线段,,的数量关系,并说明理由.【模型应用】(2)如图2,在正方形中,点E,F分别在对角线和边上,,.用等式写出线段,,的数量关系,并说明理由.【模型迁移】(3)如图3,在正方形中,点E在对角线上,点F在边延长线上,,.用等式写出线段,,的数量关系,并说明理由.27.如图1,抛物线交x轴于O,两点,顶点为.点C为的中点.(1)求抛物线的表达式;(2)过点C作,垂足为H,交抛物线于点E.求线段的长.(3)点D为线段上一动点(O点除外),在右侧作平行四边形.①如图2,当点F落在抛物线上时,求点F的坐标;②如图3,连接,,求的最小值.参考答案考生注意:本试卷满分为150分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.下列各数中,比小的数是()A. B. C.4 D.1【答案】B【解析】【分析】本题主要考查了有理数比较大小,根据正数大于0,0大于负数,两个负数比较大小,绝对值越大其值越小进行求解即可.【详解】解;∵,∴,∴四个数中比小的数是,故选:B.2.如图所示,该几何体的主视图是()A. B. C. D.【答案】C【解析】【分析】本题考查了简单组合体的三视图,根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看得到是图形是:故选:C.3.若,则的补角为()A. B. C. D.【答案】D【解析】【分析】根据和为的两个角互为补角,计算即可.本题考查了补角,熟练掌握定义是解题的关键.【详解】。则的补角为.故选:D.4.计算:()A.2 B. C. D.【答案】A【解析】【分析】本题主要考查了同分母分式减法计算,熟知相关计算法则是解题的关键.【详解】解:,故选:A.5.如图,在矩形中,对角线,相交于点O,,,则的长为()A.6 B.5 C.4 D.3【答案】C【解析】【分析】根据矩形的性质,得,结合,得到是等边三角形,结合,得到,解得即可.本题考查了矩形的性质,等边三角形的判定和性质,熟练掌握矩形的性质是解题的关键.【详解】根据矩形的性质,得,∵,∴等边三角形,∵,∴,解得.故选C.6.如图,点A,B,C在上,,垂足为D,若,则的度数是()A. B. C. D.【答案】A【解析】【分析】根据得到,根据得到,根据直角三角形的两个锐角互余,计算即可.本题考查了圆周角定理,直角三角形的性质,熟练掌握圆周角定理,直角三角形的性质是解题的关键.【详解】∵,∴,∵,∴,∴.故选C.7.如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x尺,长桌的长为y尺,则y与x的关系可以表示为()A. B. C. D.【答案】B【解析】【分析】本题主要考查了列函数关系式,观察可知,小桌的长是小桌宽的两倍,则小桌的长是,再根据长桌的长等于小桌的长加上2倍的小桌的宽列出对应的函数关系式即可.【详解】解:由题意可得,小桌的长是小桌宽的两倍,则小桌的长是,∴,故选:B.8.近年来,我国重视农村电子商务的发展.下面的统计图反映了2016—2023年中国农村网络零售额情况.根据统计图提供的信息,下列结论错误的是()A.2023年中国农村网络零售额最高B.2016年中国农村网络零售额最低C.2016—2023年,中国农村网络零售额持续增加D.从2020年开始,中国农村网络零售额突破20000亿元【答案】D【解析】【分析】根据统计图提供信息解答即可.本题考查了统计图的应用,熟练掌握统计图的意义是解题的关键.【详解】A.根据统计图信息,得到,故2023年中国农村网络零售额最高,正确,不符合题意;B.根据题意,得,故2016年中国农村网络零售额最低,正确,不符合题意;C.根据题意,得,故2016—2023年,中国农村网络零售额持续增加,正确,不符合题意;D.从2021年开始,中国农村网络零售额突破20000亿元,原说法错误,符合题意;故选D.9.敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为,那么有序数对记为对应的田地面积为()A.一亩八十步 B.一亩二十步 C.半亩七十八步 D.半亩八十四步【答案】D【解析】【分析】根据可得,横从上面从右向左看,纵从右边自下而上看,解答即可.本题考查了坐标与位置的应用,熟练掌握坐标与位置的应用是解题的关键.【详解】根据可得,横从上面从右向左看,纵从右边自下而上看,故对应的是半亩八十四步,故选D.10.如图1,动点P从菱形的点A出发,沿边匀速运动,运动到点C时停止.设点P的运动路程为x,的长为y,y与x的函数图象如图2所示,当点P运动到中点时,的长为()A.2 B.3 C. D.【答案】C【解析】【分析】结合图象,得到当时,,当点P运动到点B时,,根据菱形的性质,得,继而得到,当点P运动到中点时,的长为,解得即可.本题考查了菱形的性质,图象信息题,勾股定理,直角三角形的性质,熟练掌握菱形的性质,勾股定理,直角三角形的性质是解题的关键.【详解】结合图象,得到当时,,当点P运动到点B时,,根据菱形的性质,得,故,当点P运动到中点时,的长为,故选C.二、填空题:本大题共6小题,每小题4分,共24分.11.因式分解:________.【答案】【解析】【分析】先提取公因式,再套用公式分解即可.本题考查了因式分解,熟练掌握先提取公因式,再套用公式分解是解题的关键.【详解】.故答案为:.12.已知一次函数,当自变量时,函数y的值可以是________(写出一个合理的值即可).【答案】(答案不唯一)【解析】【分析】根据,选择,此时,解得即可.本题考查了函数值的计算,正确选择自变量是解题的关键.【详解】根据,选择,此时,故答案为:.13.定义一种新运算*,规定运算法则为:(m,n均为整数,且).例:,则________.【答案】8【解析】【分析】根据定义,得,解得即可.本题考查了实数新定义计算,正确理解定义是解题的关键.【详解】根据定义,得,故答案为:8.14.围棋起源于中国,古代称为“弈”.如图是两位同学的部分对弈图,轮到白方落子,观察棋盘,白方如果落子于点________的位置,则所得的对弈图是轴对称图形.(填写A,B,C,D中的一处即可,A,B,C,D位于棋盘的格点上)【答案】A或C【解析】【分析】根据轴对称图形的定义解答即可.本题考查了轴对称图形,熟练掌握定义是解题的关键.【详解】根据轴对称图形的定义,发现放在B,D处不能构成轴对称图形,放在A或C处可以,故答案为:A或C.15.如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y(单位:)与距离停车棚支柱的水平距离x(单位:)近似满足函数关系的图象,点在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长,高的矩形,则可判定货车________完全停到车棚内(填“能”或“不能”).【答案】能【解析】【分析】本题主要考查了二次函数的实际应用,根据题意求出当时,y的值,若此时y的值大于,则货车能完全停到车棚内,反之,不能,据此求解即可.【详解】解:∵,,∴,在中,当时,,∵,∴可判定货车能完全停到车棚内,故答案为:能.16.甘肃临夏砖雕是一种历史悠久的古建筑装饰艺术,是第一批国家级非物质文化遗产.如图1是一块扇面形的临夏砖雕作品,它的部分设计图如图2,其中扇形和扇形有相同的圆心O,且圆心角,若,,则阴影部分的面积是______.(结果用π表示)【答案】【解析】【分析】根据扇形面积公式计算即可.本题考查了扇形面积公式,熟练掌握公式是解题的关键.【详解】∵圆心角,,,∴阴影部分的面积是故答案为:.三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17.计算:.【答案】0【解析】【分析】根据二次根式混合运算计算即可.本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.【详解】.18.解不等式组:【答案】【解析】【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:解不等式①得:,解不等式②得:,∴不等式组的解集为.19.先化简,再求值:,其中,.【答案】,【解析】【分析】本题主要考查了整式的化简求值,先根据平方差公式和完全平方公式去小括号,然后合并同类项,再根据多项式除以单项式的计算法则化简,最后代值计算即可.【详解】解:,当,时,原式.20.马家窑文化以发达彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知和圆上一点M.作法如下:①以点M为圆心,长为半径,作弧交于A,B两点;②延长交于点C;即点A,B,C将的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接,,,若的半径为,则的周长为______.【答案】(1)见解析(2)【解析】【分析】(1)根据尺规作图的基本步骤解答即可;(2)连接,设的交点为D,根据两圆的圆心线垂直平分公共弦,得到,根据的半径为,是直径,是等边三角形,计算即可.本题考查了尺规作图,圆的性质,等边三角形的性质,熟练掌握作图和圆的性质是解题的关键.【小问1详解】根据基本作图的步骤,作图如下:则点A,B,C是求作的的圆周三等分点.【小问2详解】连接,设的交点为D,根据两圆的圆心线垂直平分公共弦,得到,∵的半径为,是直径,是等边三角形,∴,,∴,∴的周长为,故答案为:.21.在一只不透明的布袋中,装有质地、大小均相同的四个小球,小球上分别标有数字1,2,3,4.甲乙两人玩摸球游戏,规则为:两人同时从袋中随机各摸出1个小球,若两球上的数字之和为奇数,则甲胜;若两球上的数字之和为偶数,则乙胜.(1)请用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲乙双方公平吗?请说明理由.【答案】(1)(2)这个游戏规则对甲乙双方不公平,理由见解析【解析】【分析】本题主要考查了树状图法或列表法求解概率,游戏的公平性:(1)先画出树状图得到所有等可能性的结果数,再找到两球上的数字之和为奇数的结果数,最后利用概率计算公式求解即可;(2)同(1)求出乙获胜的概率即可得到结论.【小问1详解】解:画树状图如下:由树状图可知,一共有12种等可能性的结果数,其中两球上的数字之和为奇数的结果数有7种,∴甲获胜的概率为;【小问2详解】解:这个游戏规则对甲乙双方不公平,理由如下:由(1)中的树状图可知,两球上的数字之和为偶数的结果数有5种,∴乙获胜的概率为,∵,∴甲获胜的概率大于乙获胜的概率,∴这个游戏规则对甲乙双方不公平.22.习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒垂直于地面,测角仪,在两侧,,点C与点E相距(点C,H,E在同一条直线上),在D处测得简尖顶点A的仰角为,在F处测得筒尖顶点A的仰角为.求风电塔筒的高度.(参考数据:,,.)【答案】【解析】【分析】本题主要考查了解直角三角形的实际应用,矩形的性质与判定,过点作于G,连接,则四边形是矩形,可得,,再证明四边形是矩形,则,,进一步证明三点共线,得到;设,解得到;解得到;则,解得,即,则.【详解】解:如图所示,过点作于G,连接,则四边形是矩形,∴,,∵,∴,由题意可得,∴,∴四边形是矩形,∴,,∴,∴三点共线,∴;设,在中,,∴∴;在中,,∴∴;∴,解得,∴,∴,∴风电塔筒的高度约为.四、解答题:本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.23.在阳光中学运动会跳高比赛中,每位选手要进行五轮比赛,张老师对参加比赛的甲、乙、丙三位选手的得分(单位:分,满分10分)进行了数据的收集、整理和分析,信息如下:信息一:甲、丙两位选手的得分折线图:信息二:选手乙五轮比赛部分成绩:其中三个得分分别是;信息三:甲、乙、丙三位选手五轮比赛得分的平均数、中位数数据如下:选手统计量甲乙丙平均数m中位数n根据以上信息,回答下列问题:(1)写出表中m,n的值:_______,_______;(2)从甲、丙两位选手的得分折线图中可知,选手_______发挥的稳定性更好(填“甲”或“丙”);(3)该校现准备推荐一位选手参加市级比赛,你认为应该推荐哪位选手,请说明理由.【答案】(1);(2)甲(3)应该推荐甲选手,理由见解析【解析】【分析】本题主要考查了平均数,众数,方差与稳定性之间的关系:(1)根据平均数与众数的定义求解即可;(2)根据统计图可知,甲的成绩的波动比乙的成绩的波动小,则选手甲发挥的稳定性更好;(3)从平均成绩,中位数和稳定性等角度出发进行描述即可.【小问1详解】解:由题意得,;把丙的五次成绩按照从低到高排列为:,∴丙成绩的中位数为分,即;故答案为:;;【小问2详解】解:由统计图可知,甲的成绩的波动比乙的成绩的波动小,则选手甲发挥的稳定性更好,故答案:甲;【小问3详解】解:应该推荐甲选手,理由如下:甲的中位数和平均数都比乙的大,且甲的成绩稳定性比乙好,∴应该推荐甲选手.24.如图,在平面直角坐标系中,将函数的图象向上平移3个单位长度,得到一次函数的图象,与反比例函数的图象交于点.过点作x轴的平行线分别交与的图象于C,D两点.(1)求一次函数和反比例函数的表达式;(2)连接,求的面积.【答案】(1)一次函数的解析式为;反比例函数的解析式为;(2)【解析】【分析】本题主要考查了一次函数与反比例函数综合:(1)先根据一次函数图象的平移规律,再把点A的坐标分别代入对应的一次函数解析式和反比例函数解析式中,利用待定系数法求解即可;(2)先分别求出C、D的坐标,进而求出的长,再根据三角形面积计算公式求解即可.【小问1详解】解:∵将函数的图象向上平移3个单位长度,得到一次函数的图象,∴,把代入中得:,解得,∴一次函数的解析式为;把代入中得:,解得,∴反比例函数的解析式为;【小问2详解】解:∵轴,,∴点C和点D的纵坐标都为2,在中,当时,,即;在中,当时,,即;∴,∵,∴.25.如图,是的直径,,点E在的延长线上,且.(1)求证:是的切线;(2)当的半径为2,时,求的值.【答案】(1)见解析(2)【解析】【分析】(1)连接,,证明垂直平分,得出,证明,得出,说明,即可证明结论;(2)根据是的直径,得出,根据勾股定理求出,根据三角函数定义求出,证明,得出即可.【小问1详解】证明:连接,,如图所示:∵,∴,∵,∴点O、B在的垂直平分线上,∴垂直平分,∴,∵,∴,∴,∴,∵是的直径,∴是的切线;【小问2详解】解:∵的半径为2,∴,∵是的直径,∴,∵,∴,∴,∵,∴,∵,∴,∴.【点睛】本题主要考查了切线的判定,勾股定理,求一个角的正切值,圆周角定理,垂直平分线的判定,平行线的判定和性质,解题的关键是作出辅助线,熟练掌握相关的判定和性质.26.【模型建立】(1)如图1,已知和,,,,.用等式写出线段,,数量关系,并说明理由.【模型应用】(2)如图2,在正方形中,点E,F分别在对角线和边上,,.用等式写出线段,,的数量关系,并说明理由.【模型迁移】(3)如图3,在正方形中,点E在对角线上,点F在边的延长线上,,.用等式写出线段,,的数量关系,并说明理由.【答案】(1),理由见详解,(2),理由见详解,(3),理由见详解【解析】【分析】(1)直接证明,即可证明;(2)过E点作于点M,过E点作于点N,先证明,可得,结合等腰直角三角形的性质可得:,,即有,,进而可得,即可证;(3)过A点作于点H,过F点作,交的延长线于点G,先证明,再结合等腰直角三角形的性质,即可证明.【详解】(1),理由如下:∵,,,∴,∴,∴,∵,∴,∴,,∴,∴;(2),理由如下:过E点作于点M,过E点作于点N,如图,∵四边形是正方形,是正方形的对角线,∴,平分,,∴,即,∵,,∴,∵,∴,∴,∵,,,,∴四边形是正方形,∴是正方形对角线,,∴,,∴,,∴,即,∵,∴,即有;(3),理由见详解,过A点作于点H,过F点作,交的延长线于点G,如图,∵,,,∴,∴,∴,又∵,∴,∴,∵在正方形中,,∴,∴,∴是等腰直角三角形,∴,∴,∵,,∴是等腰直角三角形,∴,∴,∴,∵,∴,∴.【点睛】本题主要考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定与性质,角平分线的性质等知识,题目难度中等,作出合理的辅助线,灵活证明三角形的全等,并准确表示出各个边之间的数量关系,是解答本题的关键.27.如图1,抛物线交x轴于O,两点,顶点为.点C为的中点.(1)求抛物线的表达式;(2)过点C作,垂足为H,交抛物线于点E.求线段的长.(3)点D为线段上一动点(O点除外),在右侧作平行四边形.①如图2,当点F落在抛物线上时,求点F的坐标;②如图3,连接,,求的最小值.【答案】(1)(2)(3)①②【解析】【分析】(1)根据顶点为.设抛物线,把代入解析式,计算求解即可;(2)根据顶点为.点C为的中点,得到,当时,,得到.结合,垂足为H,得到的长.(3)①根据题意,得,结合四边形是平行四边形,设,结合点F落在抛物线上,得到,解得即可;②过点B作轴于点N,作点D关于直线的对称点G,过点G作轴于点H,连接,,,利用平行四边形的判定和性质,三角形不等式,勾股定理,矩形判定和性质,计算解答即可.【小问1详解】∵抛物线的顶点坐标为.设抛物线,把代入解析式,得,解得,∴.【小问2详解】∵顶点为.点C为的中点,∴,∵,∴轴,∴E的横坐标为1,设,当时,,∴.∴.【小问3详解】①根据题意,得,∵四边形是平行四边形,∴点C,点F的纵坐标相同,设,∵点F落在抛物线上,∴,解得,(舍去);故.②过点B作轴于点N,作点D关于直线的对称点G,过点G作轴于点H,连接,,,则四边形是矩形,∴,∵四边形是平行四边形,∴,∴,∴四边形是平行四边形,∴,∵,故当三点共线时,取得最小值,∵,∴的最小值,就是的最小值,且最小值就是,延长交y轴于点M,∵,∴,∵,∴,∵,∴,∴,∴,故的最小值是.

2023年甘肃中考数学试题及答案注意事项:1.全卷共120分,考试时间120分钟.2.考生必须将姓名、准考证号、考场号、座位号等个人信息填(涂)写在答题卡上.3.考生务必将答案直接填(涂)写在答题卡的相应位置上.一、选择题(本大题共12小题,每小题3分,共36分)1.-5的相反数是()A. B. C.5 D.-52.如图,直线与相交于点O,则()A. B. C. D.3.计算:()A. B. C.5 D.a4.如图1是我国古建筑墙上采用的八角形空窗,其轮廓是一个正八边形,窗外之境如同镶嵌于一个画框之中.如图2是八角形空窗的示意图,它的一个外角()A. B. C. D.5.方程的解是()A. B. C. D.6.如图1是一段弯管,弯管的部分外轮廓线如图2所示是一条圆弧AB,圆弧的半径,圆心角,则AB=()A. B. C. D.7.已知二次函数,下列说法正确的是()A.对称轴为 B.顶点坐标为 C.函数的最大值是-3 D.函数的最小值是-38.关于x的一元二次方程有两个相等的实数根,则()A-2 B.2 C.-4 D.49.2022年我国新能源汽车销量持续增长,全年销量约为572.6万辆,同比增长91.7%,连续8年位居全球第一.下面的统计图反映了2021年、2022年新能源汽车月度销量及同比增长速度的情况.(2022年同比增长速度)根据统计图提供的信息,下列推断不合理的是()A.2021年新能源汽车月度销量最高是12月份,超过40万辆B.2022年新能源汽车月度销量超过50万辆的月份有6个C.相对于2021年,2022年新能源汽车同比增长速度最快的是2月份,达到了181.1%D.相对于2021年,2022年从5月份开始新能源汽车同比增长速度持续降低10.我国古代天文学确定方向的方法中蕴藏了平行线的作图法.如《淮南子天文训》中记载:“正朝夕:先树一表东方;操一表却去前表十步,以参望日始出北廉.日直入,又树一表于东方,因西方之表,以参望日方入北康.则定东方两表之中与西方之表,则东西也.”如图,用几何语言叙述作图方法:已知直线a和直线外一定点O,过点O作直线与a平行.(1)以O为圆心,单位长为半径作圆,交直线a于点M,N;(2)分别在的延长线及上取点A,B,使;(3)连接,取其中点C,过O,C两点确定直线b,则直线.按以上作图顺序,若,则()A. B. C. D.11.一次函数的函数值y随x的增大而减小,当时,y的值可以是()A.2 B.1 C.-1 D.-212.如图,在矩形中,点E为延长线上一点,F为的中点,以B为圆心,长为半径的圆弧过与的交点G,连接.若,,则()A.2 B.2.5 C.3 D.3.5二、填空题(本大题共4小题,每小题3分,共12分)13.因式分解:______.14.如图,在中,,于点E,若,则______.15.如图,将面积为7的正方形和面积为9的正方形分别绕原点O顺时针旋转,使,落在数轴上,点A,D在数轴上对应的数字分别为a,b,则______.16.某学习小组做抛掷一枚瓶盖的实验,整理的实验数据如下表:累计抛掷次数501002003005001000200030005000盖面朝上次数2854106158264527105615872850盖面朝上频率下面有三个推断:①通过上述实验结果,可以推断这枚瓶盖有很大的可能性不是质地均匀的;②第2000次实验的结果一定是“盖面朝上”;③随着实验次数的增大,“盖面朝上”的概率接近0.53.其中正确的是______.(填序号)三、解答题(本大题共12小题,共72分)17.计算:.18.计算:.19.解不等式组:.20.如图,反比例函数与一次函数图象交于点,轴于点D,分别交反比例函数与一次函数的图象于点B,C.(1)求反比例函数与一次函数的表达式;(2)当时,求线段的长.21.综合与实践问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”即:作一个已知角的平分线,如图2是欧几里得在《几何原本》中给出的角平分线作图法:在和上分别取点C和D,使得,连接,以为边作等边三角形,则就是的平分线.请写出平分的依据:____________;类比迁移:(2)小明根据以上信息研究发现:不一定必须是等边三角形,只需即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3,在的边,上分别取,移动角尺,使角尺两边相同刻度分别与点M,N重合,则过角尺顶点C的射线是的平分线,请说明此做法的理由;拓展实践:(3)小明将研究应用于实践.如图4,校园的两条小路和,汇聚形成了一个岔路口A,现在学校要在两条小路之间安装一盏路灯E,使得路灯照亮两条小路(两条小路一样亮),并且路灯E到岔路口A的距离和休息椅D到岔路口A的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规在对应的示意图5中作出路灯E的位置.(保留作图痕迹,不写作法)22.如图1是我国第一个以“龙”为主题的主题公园——“兰州龙源”.“兰州龙源”的“龙”字主题雕塑以紫铜铸造,如巨龙腾空,气势如虹,屹立在黄河北岸.某数学兴趣小组开展了测量“龙”字雕塑CD高度的实践活动.具体过程如下:如图2,“龙”字雕塑CD位于垂直地面的基座BC上,在平行于水平地面的A处测得、,.求“龙”字雕塑的高度.(B,C,D三点共线,.结果精确到0.1m)(参考数据:,,,,,)23.一名运动员在高的跳台进行跳水,身体(看成一点)在空中的运动轨迹是一条抛物线,运动员离水面的高度与离起跳点A的水平距离之间的函数关系如图所示,运动员离起跳点A的水平距离为时达到最高点,当运动员离起跳点A的水平距离为时离水面的距离为.(1)求y关于x的函数表达式;(2)求运动员从起跳点到入水点水平距离的长.24.如图,矩形的对角线与相交于点O,,直线是线段的垂直平分线,分别交于点F,G,连接.(1)判断四边形的形状,并说明理由;(2)当时,求的长.25.某校八年级共有男生300人,为了解该年级男生排球垫球成绩和掷实心球成绩的情况,从中随机抽取40名男生进行测试,对数据进行整理、描述和分析,下面是给出的部分信息.信息一:排球垫球成绩如下图所示(成绩用x表示,分成六组:A.;B.;C.;D.;E.;F.).信息二:排球垫球成绩在D.这一组的是:20,20,21,21,21,22,22,23,24,24信息三:掷实心球成绩(成绩用y表示,单位:米)的人数(频数)分布表如下:分组人数2m10962信息四:这次抽样测试中6名男生的两项成绩的部分数据如下:学生学生1学生2学生3学生4学生5学生6排球垫球262523222215掷实心球▲7.87.8▲8.89.2根据以上信息,回答下列问题:(1)填空:______;(2)下列结论正确的是_____;(填序号)①排球垫球成绩超过10个的人数占抽取人数的百分比低于60%;②掷实心球成绩的中位数记为n,则;③若排球垫球成绩达到22个及以上时,成绩记为优秀.如果信息四中6名男生的两项成绩恰好为优秀的有4名,那么学生3掷实心球的成绩是优秀.(3)若排球垫球成绩达到22个及以上时,成绩记为优秀,请估计全年级男生排球垫球成绩达到优秀的人数.26.如图,内接于,是的直径,,于点,交于点,交于点,,连接.(1)求证:是的切线;(2)判断的形状,并说明理由;(3)当时,求的长.27.在平面直角坐标系中,给出如下定义:为图形上任意一点,如果点到直线的距离等于图形上任意两点距离的最大值时,那么点称为直线的“伴随点”.例如:如图1,已知点,,在线段上,则点是直线:轴的“伴随点”.

(1)如图2,已知点,,是线段上一点,直线过,两点,当点是直线的“伴随点”时,求点的坐标;(2)如图3,轴上方有一等边三角形,轴,顶点在轴上且在上方,,点是上一点,且点是直线:轴的伴随点.当点到轴的距离最小时,求等边三角形的边长;(3)如图4,以,,为顶点的正方形上始终存在点,使得点是直线:的伴随点.请直接写出的取值范围.28.综合与实践【思考尝试】(1)数学活动课上,老师出示了一个问题:如图1,在矩形ABCD中,E是边上一点,于点F,,,.试猜想四边形的形状,并说明理由;【实践探究】(2)小睿受此问题启发,逆向思考并提出新的问题:如图2,在正方形中,E是边上一点,于点F,于点H,交于点G,可以用等式表示线段,,的数量关系,请你思考并解答这个问题;【拓展迁移】(3)小博深入研究小睿提出的这个问题,发现并提出新的探究点:如图3,在正方形中,E是边上一点,于点H,点M在上,且,连接,,可以用等式表示线段,的数量关系,请你思考并解答这个问题.

2023年兰州市初中学业水平考试数学注意事项:1.全卷共120分,考试时间120分钟.2.考生必须将姓名、准考证号、考场号、座位号等个人信息填(涂)写在答题卡上.3.考生务必将答案直接填(涂)写在答题卡的相应位置上.一、选择题(本大题共12小题,每小题3分,共36分)【1题答案】【答案】C【2题答案】【答案】B【3题答案】【答案】D【4题答案】【答案】A【5题答案】【答案】A【6题答案】【答案】B【7题答案】【答案】C【8题答案】【答案】A【9题答案】【答案】D【10题答案】【答案】A【11题答案】【答案】D【12题答案】【答案】C二、填空题(本大题共4小题,每小题3分,共12分)【13题答案】【答案】【14题答案】【答案】【15题答案】【答案】【16题答案】【答案】①③三、解答题(本大题共12小题,共72分)【17题答案】【答案】【18题答案】【答案】【19题答案】【答案】【20题答案】【答案】(1)反比例函数表达式为;一次函数的表达式为;(2).【21题答案】【答案】(1);(2)证明见解析;(3)作图见解析;【22题答案】【答案】“龙”字雕塑的高度为.【23题答案】【答案】(1)y关于x的函数表达式为;(2)运动员从起跳点到入水点的水平距离的长为.【24题答案】【答案】(1)四边形是菱形,理由见解析(2).【25题答案】【答案】(1)(2)②③(3)人【26题答案】【答案】(1)见解析(2)是等腰三角形,理由见解析(3)【27题答案】【答案】(1)(2)(3)【28题答案】【答案】(1)四边形是正方形,证明见解析;(2);(3),证明见解析;

2022年甘肃中考数学试题一、选择题1.计算的结果是()A.±2 B.2 C. D.2.如图,直线,直线c与直线a,b分别相交于点A,B,,垂足为C.若,则()A.52° B.45° C.38° D.26°3.下列分别是2022年北京冬奥会、1998年长野冬奥会、1992年阿尔贝维尔冬奥运会、1984年萨拉热窝冬奥会会徽上的图案,其中是轴对称图形的是()A. B.C. D.4.计算:()A. B. C. D.5.如图,内接于,CD是的直径,,则()A.70° B.60° C.50° D.40°6.若一次函数的图象经过点,,则与的大小关系是()A. B. C. D.7.关于x的一元二次方程有两个相等的实数根,则()A.-2 B.-1 C.0 D.18.已知,,若,则()A.4 B.6 C.8 D.169.无色酚酞溶液是一中常见常用酸碱指示剂,广泛应用于检验溶液酸碱性,通常情况下酚酞溶液遇酸溶液不变色,遇中性溶液也不变色,遇碱溶液变红色.现有5瓶缺失标签的无色液体:蒸馏水、白醋溶液、食用碱溶液、柠檬水溶液、火碱溶液,将酚酞试剂滴入任意一瓶液体后呈现红色的概率是()A. B. C. D.10.如图,菱形ABCD对角线AC与BD相交于点O,E为AD的中点,连接OE,,,则()A.4 B. C.2 D.11.已知二次函数,当函数值y随x值的增大而增大时,x的取值范围是()A. B. C. D.12.如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O为圆心,OA,OB长分别为半径,圆心角形成的扇面,若,,则阴影部分的面积为()A. B. C. D.二、填空题13.因式分解:___________.14.如图,小刚在兰州市平面地图的部分区域建立了平面直角坐标系,如果白塔山公园的坐标是(2,2),中山桥的坐标是(3,0),那么黄河母亲像的坐标是______.15.如图,在矩形纸片ABCD中,点E在BC边上,将沿DE翻折得到,点F落在AE上.若,,则______cm.16.2022年3月12日是我国第44个植树节,某林业部门为了考察某种幼树在一定条件下的移植成活率,在同等条件下,对这种幼树进行大量移植,并统计成活情况,下表是这种幼树移植过程中的一组统计数据:幼树移植数(棵)100100050008000100001500020000幼树移植成活数(棵)878934485722489831344318044幼树移植成活的频率0.8700.8930.8970.9030.8980.8960.902估计该种幼树在此条件下移植成活的概率是______.(结果精确到0.1)三、解答题17.解不等式:.18.计算:.19.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,,,,,求的大小.20.如图,小睿为测量公园的一凉亭AB的高度,他先在水平地面点E处用高1.5m的测角仪DE测得,然后沿EB方向向前走3m到达点G处,在点G处用高1.5m的测角仪FG测得.求凉亭AB的高度.(A,C,B三点共线,,,,.结果精确到0.1m)(参考数据:,,,,,)21.人口问题是“国之大者”.以习近平同志为核心的党中央高度重视人口问题,准确把握人口发展形势,有利于推动社会持续健康发展,为开启全面建设社会主义现代化国家新征程、向第二个百年奋斗目标进军创造良好的条件.某综合与实践研究小组根据我国第七次人口普查数据进行整理、描述和分析,给出部分数据信息:信息一:普查登记的全国大陆31个省、自治区、直辖市人口数的频数分布直方图如下:(数据分成6组:,,,,,)信息二:普查登记的全国大陆31个省、自治区、直辖市人口数(百万人)在这一组的数据是:58,47,45,40,43,42,50;信息三:2010——2021年全国大陆人口数及自然增长率;请根据以上信息,解答下列问题:(1)普查登记的全国大陆31个省、自治区、直辖市人口数的中位数为______百万人.(2)下列结论正确的是______.(只填序号)①全国大陆31个省、自治区、直辖市中人口数大于等于100(百万人)的有2个地区;②相对于2020年,2021年全国大陆人口自然增长率降低,全国大陆人口增长缓慢;③2010-2021年全国大陆人口自然增长率持续降低.(3)请写出2016-2021年全国大陆人口数、全国大陆人口自然增长率的变化趋势,结合变化趋势谈谈自己的看法.22.综合与实践问题情境:我国东周到汉代一些出土实物上反映出一些几何作图方法,如侯马铸铜遗址出土车軎范、芯组成的(如图1),它的端面是圆形,如图2是用“矩”(带直角的角尺)确定端面圆心的方法:将“矩”的直角尖端A沿圆周移动,直到,在圆上标记A,B,C三点;将“矩”向右旋转,使它左侧边落在A,B点上,“矩”的另一条边与圆的交点标记为D点,这样就用“矩”确定了圆上等距离的A,B,C,D四点,连接AD,BC相交于点,这样就用“矩”确定了圆上等距离的A,B,C,D四点,链接AD,BC相较于点O,即O为圆心.(1)问题解决:请你根据“问题情境”中提供的方法,用三角板还原我国古代几何作图确定圆心O.如图3,点A,B,C在上,,且,请作出圆心O.(保留作图痕迹,不写作法)(2)类比迁移:小梅受此问题的启发,在研究了用“矩”(带直角的角尺)确定端面圆心的方法后发现,如果AB和AC不相等,用三角板也可以确定圆心O.如图4,点A,B,C在上,,请作出圆心O.(保留作图痕迹,不写作法)(3)拓展探究:小梅进一步研究,发现古代由“矩”度量确定圆上等距离点时存在误差,用平时学的尺规作图的方法确定圆心可以减少误差.如图5,点A,B,C是上任意三点,请用不带刻度的直尺和圆规作出圆心O.(保留作图痕迹,不写作法)请写出你确定圆心的理由:______________________________.23.如图,在中,,,,M为AB边上一动点,,垂足为N.设A,M两点间的距离为xcm(),B,N两点间的距离为ycm(当点M和B点重合时,B,N两点间的距离为0).小明根据学习函数的经验,对因变量y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.(1)列表:下表的已知数据是根据A,M两点间的距离x进行取点、画图、测量,得到了y与x的几组对应值:x/cm00.511.51.822.533.544.55y/cm43.963.793.47a2.992.401.791.230.740.330请你通过计算,补全表格:______;(2)描点、连线:在平面直角坐标系中,描出表中各组数值所对应的点,并画出函数y关于x的图像;(3)探究性质:随着自变量x的不断增大,函数y的变化趋势:______.(4)解决问题:当时,AM的长度大约是______cm.(结果保留两位小数)24.掷实心球是兰州市高中阶段学校招生体育考试的选考项目.如图1是一名女生投掷实心球,实心求行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,抛出时起点处高度为,当水平距离为3m时,实心球行进至最高点3m处.(1)求y关于x的函数表达式;(2)根据兰州市高中阶段学校招生体有考试评分标准(女生),投掷过程中,实心球从起点到落地点的水平距离大于等于6.70m,此项考试得分为满分10分.该女生在此项考试中是否得满分,请说明理由.25.如图,点A在反比例函数的图像上,轴,垂足为,过作轴,交过B点的一次函数的图像于D点,交反比例函数的图像于E点,.(1)求反比例函数和一次函数的表达式:(2)求DE的长.26.如图,是的外接圆,AB是直径,,连接AD,,AC与OD相交于点E.(1)求证:AD是的切线;(2)若,,求的半径.27.在平面直角坐标系中,是第一象限内一点,给出如下定义:和两个值中的最大值叫做点P的“倾斜系数”k.(1)求点的“倾斜系数”k的值;(2)①若点的“倾斜系数”,请写出a和b的数量关系,并说明理由;②若点的“倾斜系数”,且,求OP的长;(3)如图,边长为2的正方形ABCD沿直线AC:运动,是正方形ABCD上任意一点,且点P的“倾斜系数”,请直接写出a的取值范围.28.综合与实践,【问题情境】:数学活动课上,老师出示了一个问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论