版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省霍州市煤电第一中学2026届高一上数学期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则的大致图像为()A. B.C. D.2.下列集合与集合相等的是()A. B.C. D.3.已知角的终边与单位圆的交点为,则()A. B.C. D.4.已知是定义在上的单调函数,满足,则函数的零点所在区间为()A. B.C. D.5.下列四个命题:①三点确定一个平面;②一条直线和一个点确定一个平面;③若四点不共面,则每三点一定不共线;④三条平行直线确定三个平面.其中正确有A.1个 B.2个C.3个 D.4个6.函数f(x)=-4x+2x+1的值域是()A. B.C. D.7.已知角α的终边过点P(4,-3),则sinα+cosα的值是()A. B.C. D.8.已知函数,,则函数的值域为()A. B.C. D.9.=()A. B.C. D.10.关于的不等式恰有2个整数解,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若直线:与直线:互相垂直,则实数的值为__________12.把物体放在冷空气中冷却,如果物体原来的温度是θ1,空气的温度是θ0℃,那么t后物体的温度θ(单位:)可由公式(k为正常数)求得.若,将55的物体放在15的空气中冷却,则物体冷却到35所需要的时间为___________.13.16/17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急,约翰纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数.后来天才数学家欧拉发现了对数与指数的关系,即.现在已知,,则__________.14.若扇形AOB的圆心角为,周长为10+3π,则该扇形的面积为_____15.若,则该函数定义域为_________16.命题,,则为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,函数(1)求函数的值域;(2)若不等式对任意实数恒成立,试求实数的取值范围18.已知函数.(1)求的定义域;(2)若函数,且对任意的,,恒成立,求实数a的取值范围.19.已知A(3,7)、B(3,-1)、C(9,-1),求△ABC的外接圆方程.20.已知函数f(x)=为奇函数(1)求a的值;(2)判断函数f(x)的单调性,并加以证明21.已知函数f(x)=(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】计算的值即可判断得解.【详解】解:由题得,所以排除选项A,D.,所以排除选项C.故选:B2、C【解析】根据各选项对于的集合的代表元素,一一判断即可;【详解】解:集合,表示含有两个元素、的集合,对于A:,表示含有一个点的集合,故不相等;对于B:,表示的是点集,故不相等;对于C:,表示方程的解集,因为的解为,或,所以对于D:,故不相等故选:C3、A【解析】利用三角函数的定义得出和的值,由此可计算出的值.【详解】由三角函数的定义得,,因此,.故选:A.【点睛】本题考查三角函数的定义,考查计算能力,属于基础题.4、C【解析】设,即,再通过函数的单调性可知,即可求出的值,得到函数的解析式,然后根据零点存在性定理即可判断零点所在区间【详解】设,即,,因为是定义在上的单调函数,所以由解析式可知,在上单调递增而,,故,即因为,,由于,即有,所以故,即的零点所在区间为故选:C【点睛】本题主要考查函数单调性的应用,零点存在性定理的应用,意在考查学生的转化能力,属于较难题5、A【解析】利用三个公理及其推论逐项判断后可得正确的选项.【详解】对于①,三个不共线的点可以确定一个平面,所以①不正确;对于②,一条直线和直线外一点可以确定一个平面,所以②不正确;对于③,若三点共线了,四点一定共面,所以③正确;对于④,当三条平行线共面时,只能确定一个平面,所以④不正确.故选:A.6、A【解析】令t=2x(t>0),则原函数化为g(t)=-t2+t+1(t>0),然后利用二次函数求值域【详解】令t=2x(t>0),则原函数化为g(t)=-t2+t+1(t>0),其对称轴方程为t=,∴当t=时,g(t)有最大值为∴函数f(x)=-4x+2x+1的值域是故选A【点睛】本题考查利用换元法及二次函数求值域,是基础题7、A【解析】由三角函数的定义可求得sinα与cosα,从而可得sinα+cosα的值【详解】∵知角α的终边经过点P(4,-3),∴sinα,cosα,∴sinα+cosα故选:A8、B【解析】根据给定条件换元,借助二次函数在闭区间上的最值即可作答.【详解】依题意,函数,,令,则在上单调递增,即,于是有,当时,,此时,,当时,,此时,,所以函数的值域为.故选:B9、B【解析】利用诱导公式和特殊角的三角函数值直接计算作答.【详解】.故选:B10、B【解析】由已知及一元二次不等式的性质可得,讨论a结合原不等式整数解的个数求的范围,【详解】由恰有2个整数解,即恰有2个整数解,所以,解得或,①当时,不等式解集为,因为,故2个整数解为1和2,则,即,解得;②当时,不等式解集为,因为,故2个整数解为,则,即,解得.综上所述,实数的取值范围为或.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、-2【解析】由于两条直线垂直,故.12、2【解析】将数据,,,代入公式,得到,解指数方程,即得解【详解】将,,,代入得,所以,,所以,即.故答案为:213、2【解析】先根据要求将指数式转为对数式,作乘积运算时注意使用换底公式去计算.【详解】∵,∴,∴故答案为2【点睛】底数不同的两个对数式进行运算时,有时可以利用换底公式:将其转化为同底数的对数式进行运算.14、【解析】设扇形AOB的的弧长为l,半径为r,由已知可得l=3π,r=5,再结合扇形的面积公式求解即可.【详解】解:设扇形AOB的的弧长为l,半径为r,∴,l+2r=10+3π,∴l=3π,r=5,∴该扇形的面积S,故答案为:.【点睛】本题考查了扇形的弧长公式及扇形的面积公式,重点考查了方程的思想,属基础题.15、【解析】由,即可求出结果.【详解】因为,所以,解得,所以该函数定义域为.故答案为【点睛】本题主要考查函数的定义域,根据正切函数的定义域,即可得出结果,属于基础题型.16、,【解析】由全称命题的否定即可得解.【详解】因为命题为全称命题,所以为“,”.故答案为:,.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)[-4,﹢∞);(2)【解析】(1)将原函数转化为二次函数,根据求二次函数最值的方法求解即可.(2)由题意得,求得,然后通过解对数不等式可得所求范围【详解】(1)由题意得,即的值域为[-4,﹢∞).(2)由不等式对任意实数恒成立得,又,设,则,∴,∴当时,=∴,即,整理得,即,解得,∴实数x的取值范围为【点睛】解答本题时注意一下两点:(1)解决对数型问题时,可通过换元的方法转化为二次函数的问题处理,解题时注意转化思想方法的运用;(2)对于函数恒成立的问题,可根据题意转化成求函数的最值的问题处理,特别是对于双变量的问题,解题时要注意分清谁是主变量,谁是参数18、(1).(2)(2,+∞).【解析】(1)使对数式有意义,即得定义域;(2)命题等价于,如其中一个不易求得,如不易求,则转化恒成立,再由其它方法如分离参数法求解或由二次不等式恒成立问题求解【详解】(1)由题可知且,所以.所以的定义域为.(2)由题易知其定义域上单调递增.所以在上的最大值为,对任意的恒成立等价于恒成立.由题得.令,则恒成立.当时,,不满足题意.当时,,解得,因为,所以舍去.当时,对称轴为,当,即时,,所以;当,即时,,无解,舍去;当,即时,,所以,舍去.综上所述,实数a的取值范围为(2,+∞).【点睛】本题考查求对数型复合函数的定义域,不等式恒成立问题.解题时注意转化与化归思想的应用19、【解析】设△ABC外接圆的方程为x2+y2+Dx+Ey+F=0,把A(1,0),B(0,1),C(3,4)代入,能求出△ABC外接圆的方程【详解】设外接圆的方程为.将ABC三点坐标带人方程得:解得圆的方程为【点睛】本题考查圆的方程的求法,解题时要认真审题,注意待定系数法的合理运用20、(1)a=-1;(2)函数f(x)在定义域R上单调递增,详见解析【解析】(1)根据定义域为R的奇函数满足f(0)=0即可求得结果;(2)由定义法知,当x1<x2时,f(x1)<f(x2),故可证得结果.【详解】(1)因为函数f(x)是奇函数,且f(x)的定义域为R,所以f(0)==0,所以a=-1,经检验满足题意.(2)f(x)==1-,函数f(x)在定义域R上单调递增理由:设任意的x1,x2,且x1<x2,则f(x1)-f(x2)=.因为x1<x2,所以,所以<0,所以f(x1)<f(x2),所以函数f(x)在定义域R上单调递增【点睛】本题考查指数型复合函数的基本性质,要求学生会根据函数的奇偶性求参数以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中医诊室制度
- 唐山市公安局路北分局2026年公开招聘警务辅助人员备考题库及一套参考答案详解
- 2025-2030中国无缝钛管行业供需销售格局及发展前景运行态势研究报告
- 2025-2030中国智能音乐行业市场深度调研及发展趋势与投资前景预测研究报告
- 2026中国干混砂浆添加剂行业竞争趋势与供需前景预测报告
- 2025至2030中国智能制造装备行业市场供需关系及投资战略分析报告
- 中国电建集团昆明勘测设计研究院有限公司招聘20人备考题库及1套完整答案详解
- 2025-2030中医理疗仪器研发技术革新评估分析报告
- 2025-2030中国及全球神经痛用药行业营销战略分析及竞争态势预测研究报告
- 2026年苏州交投鑫能交通科技有限公司公开招聘备考题库及一套参考答案详解
- 企业竞争图谱:2024年运动户外
- 肺癌中西医结合诊疗指南
- 高压气瓶固定支耳加工工艺设计
- 宠物服装采购合同
- 携程推广模式方案
- THHPA 001-2024 盆底康复管理质量评价指标体系
- JGT138-2010 建筑玻璃点支承装置
- 垃圾清运服务投标方案(技术方案)
- 光速测量实验讲义
- 断桥铝合金门窗施工组织设计
- 新苏教版六年级科学上册第一单元《物质的变化》全部教案
评论
0/150
提交评论