重庆市江津巴县长寿等七校联盟2026届数学高二上期末检测试题含解析_第1页
重庆市江津巴县长寿等七校联盟2026届数学高二上期末检测试题含解析_第2页
重庆市江津巴县长寿等七校联盟2026届数学高二上期末检测试题含解析_第3页
重庆市江津巴县长寿等七校联盟2026届数学高二上期末检测试题含解析_第4页
重庆市江津巴县长寿等七校联盟2026届数学高二上期末检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市江津巴县长寿等七校联盟2026届数学高二上期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数,则不等式的解集是()A. B.C. D.2.江西省重点中学协作体于2020年进行了一次校际数学竞赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在之间,其得分的频率分布直方图如图,则下列结论错误的是()A.得分在之间的共有40人B.从这100名参赛者中随机选取1人,其得分在的概率为0.5C.这100名参赛者得分的中位数为65D.可求得3.若,满足约束条件则的最大值是A.-8 B.-3C.0 D.14.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上两人与下三人等,问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得之和与丙、丁、戊所得之和相同,且是甲、乙、丙、丁、戊所得以此为等差数列,问五人各得多少钱?”(“钱”是古代一种重量单位),这个问题中戊所得为()A.钱 B.钱C.钱 D.钱5.已知命题:抛物线的焦点坐标为;命题:等轴双曲线的离心率为,则下列命题是真命题的是()A. B.C. D.6.已知抛物线的焦点与椭圆的右焦点重合,则抛物线的准线方程为()A. B.C. D.7.若将一个椭圆绕其中心旋转90°,所得椭圆短轴两顶点恰好是旋转前椭圆的两焦点,这样的椭圆称为“对偶椭圆”,下列椭圆中是“对偶椭圆”的是()A. B.C. D.8.曲线的离心率为()A. B.C. D.9.已知直线l:,则下列结论正确的是()A.直线l的倾斜角是B.直线l在x轴上的截距为1C.若直线m:,则D.过与直线l平行的直线方程是10.等比数列的第4项与第6项分别为12和48,则公比的值为()A. B.2C.或2 D.或11.我国古代数学名著《算法统宗》记有行程减等问题:三百七十八里关,初行健步不为难次日脚痛减一半,六朝才得到其关.要见每朝行里数,请公仔细算相还.意为:某人步行到378里的要塞去,第一天走路强壮有力,但把脚走痛了,次日因脚痛减少了一半,他所走的路程比第一天减少了一半,以后几天走的路程都比前一天减少一半,走了六天才到达目的地.请仔细计算他每天各走多少路程?在这个问题中,第四天所走的路程为()A.96 B.48C.24 D.1212.已知命题:;:若,则,则下列判断正确的是()A.为真,为真,为假 B.为真,为假,为真C.为假,为假,为假 D.为真,为假,为假二、填空题:本题共4小题,每小题5分,共20分。13.若某几何体的三视图如图所示,则该几何体的体积是__________14.设Sn是等差数列{an}的前n项和,若数列{an}满足an+Sn=An2+Bn+C且A>0,则+B-C的最小值为________15.若函数解析式,则使得成立的的取值范围是___________.16.展开式的常数项是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知展开式中,第三项的系数与第四项的系数相等(1)求n的值;(2)求展开式中有理项的系数之和(用数字作答)18.(12分)如图,第1个图形需要4根火柴,第2个图形需要7根火柴,,设第n个图形需要根火柴(1)试写出,并求;(2)记前n个图形所需的火柴总根数为,设,求数列的前n项和19.(12分)已知数列是公差为2的等差数列,它的前n项和为,且,,成等比数列(1)求的通项公式(2)求数列的前n项和20.(12分)已知数列是等差数列,其前n项和为,,,数列满足(且),.(1)求和的通项公式;(2)求数列的前n项和.21.(12分)设二次函数.(1)若是函数的两个零点,且最小值为.①求证:;②当且仅当a在什么范围内时,函数在区间上存在最小值?(2)若任意实数t,在闭区间上总存在两实数m,n,使得成立,求实数a的取值范围.22.(10分)已知首项为1的数列满足.(1)求数列的通项公式;(2)记,求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用导数判断函数单调递增,然后进行求解.【详解】对函数进行求导:,因为,,所以,因为,所以f(x)是奇函数,所以在R上单调递增,又因为,所以的解集为.故选:A2、C【解析】根据给定的频率分布直方图,结合直方图的性质,逐项计算,即可求解.【详解】由频率分布直方图,可得A中,得分在之间共有人,所以A正确;B中,从100名参赛者中随机选取1人,其得分在中的概率为,所以B正确;D中,由频率分布直方图的性质,可得,解得,所以D正确.C中,前2个小矩形面积之和为0.4,前3个小矩形面积之和为0.7,所以中位数在[60,70],这100名参赛者得分的中位数为,所以C不正确;故选:C.3、C【解析】作出可行域,把变形为,平移直线过点时,最大.【详解】作出可行域如图:由得:,作出直线,平移直线过点时,.故选C.【点睛】本题主要考查了简单线性规划问题,属于中档题.4、D【解析】根据题意将实际问题转化为等差数列的问题即可解决【详解】解:由题意,可设甲、乙、丙、丁、戊五人分得的钱分别为,,,,则,,,,成等差数列,设公差为,整理上面两个算式,得:,解得,故选:5、D【解析】求出的焦点坐标,及等轴双曲线的离心率,判断出为假命题,q为真命题,进而判断出答案.【详解】抛物线的焦点坐标为,故命题为假命题;命题:等轴双曲线中,,所以离心率为,故命题q为真命题,所以为真命题,其他选项均为假命题.故选:D6、C【解析】先求出椭圆的右焦点,从而可求抛物线的准线方程.【详解】,椭圆右焦点坐标为,故抛物线的准线方程为,故选:C.【点睛】本题考查抛物线的几何性质,一般地,如果抛物线的方程为,则抛物线的焦点的坐标为,准线方程为,本题属于基础题.7、A【解析】由题意可得,所给的椭圆中的,的值求出的值,进而判断所给命题的真假【详解】解:因为椭圆短的轴两顶点恰好是旋转前椭圆的两焦点,即,即,中,,,所以,故,所以正确;中,,,所以,所以不正确;中,,,所以,所以不正确;中,,,所以,所以不正确;故选:8、C【解析】由曲线方程直接求离心率即可.【详解】由题设,,,∴离心率.故选:C.9、D【解析】A.将直线方程的一般式化为斜截式可得;B.令y=0可得;C.求出直线m斜率即可判断;D.设要求直线的方程为,将代入即可.【详解】根据题意,依次分析选项:对于A,直线l:,即,其斜率,则倾斜角是,A错误;对于B,直线l:,令y=0,可得,l在x轴上的截距为,B错误;对于C,直线m:,其斜率,,故直线m与直线l不垂直,C错误;对于D,设要求直线的方程为,将代入,可得t=0,即要求直线为,D正确;故选:D10、C【解析】根据等比数列的通项公式计算可得;详解】解:依题意、,所以,即,所以;故选:C11、C【解析】每天所走的里程构成公比为的等比数列,设第一天走了里,利用等比数列基本量代换,直接求解.【详解】由题意可知:每天所走的里程构成公比为的等比数列.第一天走了里,第4天走了.故选:C12、D【解析】先判断出命题,的真假,即可判断.【详解】因为成立,所以命题为真,由可得或,所以命题为假命题,所以为真,为假,为假.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】根据三视图可得如图所示的几何体,从而可求其体积.【详解】据三视图分析知,该几何体为直三棱柱,且底面为直角边为1的等腰直角三角形,高为2,所以其体积故答案为:114、2【解析】因为{an}为等差数列,设公差为d,由an+Sn=An2+Bn+C,得a1+(n-1)d+na1+n(n-1)d=an+Sn=An2+Bn+C,即(d-A)n2+(a1+-B)n+(a1-d-C)=0对任意正整数n都成立所以(d-A)=0,a1+d-B=0,a1-d-C=0,所以A=d,B=a1+d,C=a1-d,所以3A-B+C=0.+B-C=+3A≥2.15、【解析】由题意先判断函数为偶函数,再利用的导函数判断在上单调递增,根据偶函数的对称性得上单调递减.要使成立,即,解不等式即可得到答案.【详解】,,为偶函数,当时,,故函数在上单调递增.为偶函数,在上单调递减.要使成立,即.故答案为:.16、【解析】求出的通项公式,令的指数为0,即可求解.【详解】的通项公式是,,依题意,令,所以的展开式中的常数项为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)8;(2).【解析】(1)由题设可得,进而写出第三、四项的系数,结合已知列方程求n值即可.(2)由(1)有,确定有理项的对应k值,进而求得对应项的系数,即可得结果.小问1详解】由题意,二项式展开式的通项公式所以第三项系数为,第四项系数为,由,解得,即n的值为8【小问2详解】由(1)知:当,3,6时,对应的是有理项当时,展开式中对应的有理项为;当时,展开式中对应的有理项为;当时,展开式中对应的有理项为;故展开式中有理项的系数之和为18、(1),;(2).【解析】(1)根据题设找到规律写出,由等差数列的定义求.(2)由等差数列前n项和求,再利用裂项相消法求.【小问1详解】由题意知:,,,,可得每增加一个正方形,火柴增加3根,即,所以数列是以4为首项,以3为公差的等差数列,则.【小问2详解】由题意可知,,所以,则,所以,,即19、(1);(2)【解析】(1)根据等差数列的通项公式,分别表示出与,由等比中项定义即可求得首项,进而求得的通项公式(2)根据等差数列的首项与公差,求出的前n项和,进而可知,再用裂项法可求得【详解】(1)由题意,得,,所以由,得,解得,所以,即(2)由(1)知,则,,【点睛】本题考查了等差数列通项公式的应用,等比中项的定义,裂项法求数列前n项和的简单应用,属于基础题20、(1),;(2).【解析】(1)根据,列方程组即可求解数列的通项公式,根据可求数列的通项公式;(2)化简,利用裂项相消法求该数列前n项和.【小问1详解】设等差数列公差为d,∵,∴,∵公差,∴.由得,即,∴数列是首项为,公比为2的等比数列,∴;【小问2详解】∵,∴,.21、(1)①证明见解析;②(2)【解析】(1)①根据二次函数的性质和一元二次方程的求根公式,求得,即可证得;②由①知,区间,根据二次函数的性质,即可求解.(2)存在两实数,使得成立,转化为在区间上,有成立,设﹐结合二次函数的图象与性质,分类讨论,即可求解.【小问1详解】解:①由题意,函数二次函数,因为最小值为,可得,即,因为,所以根据求根公式得,所以.②由①知,区间因为,对称轴,且函数在区间上存在最小值,所以,因为,所以解得,所以,即a的取值范围为.【小问2详解】解:存在两实数,使得成立,则在区间上,有成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论