新疆兵地2026届数学高一上期末学业质量监测模拟试题含解析_第1页
新疆兵地2026届数学高一上期末学业质量监测模拟试题含解析_第2页
新疆兵地2026届数学高一上期末学业质量监测模拟试题含解析_第3页
新疆兵地2026届数学高一上期末学业质量监测模拟试题含解析_第4页
新疆兵地2026届数学高一上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆兵地2026届数学高一上期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等边的边长为2,为内(包括三条边上)一点,则的最大值是A.2 B.C.0 D.2.已知集合,则()A. B.C. D.3.设,,,则的大小关系是()A B.C. D.4.设集合A={1,3,5},B={1,2,3},则A∪B=()A. B.C.3, D.2,3,5.如图是一个体积为10的空间几何体的三视图,则图中的值为()A2 B.3C.4 D.56.下列命题中不正确的是()A.一组数据1,2,3,3,4,5的众数大于中位数B.数据6,5,4,3,3,3,2,2,2,1的分位数为5C.若甲组数据的方差为5,乙组数据为5,6,9,10,5,则这两组数据中较稳定的是乙D.为调查学生每天平均阅读时间,某中学从在校学生中,利用分层抽样的方法抽取初中生20人,高中生10人.经调查,这20名初中生每天平均阅读时间为60分钟,这10名高中生每天平均阅读时间为90分钟,那么被抽中的30名学生每天平均阅读时间为70分钟7.设,是两条不同的直线,是一个平面,则下列命题正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则8.对于实数,“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.设集合,若,则a的取值范围是()A. B.C. D.10.函数y=1+x+的部分图象大致为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.写出一个满足,且的函数的解析式__________12.设,关于的方程有两实数根,,且,则实数的取值范围是___________.13.如图是函数在一个周期内的图象,则其解析式是________14.函数在上单调递增,且为奇函数,若,则满足的的取值范围为__________15.设向量不平行,向量与平行,则实数_________.16.若函数(常数),对于任意两个不同的、,当、时,均有(为常数,)成立,如果满足条件的最小正整数为,则实数的取值范围是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.2009年某市某地段商业用地价格为每亩60万元,由于土地价格持续上涨,到2021年已经上涨到每亩120万元.现给出两种地价增长方式,其中是按直线上升的地价,是按对数增长的地价,t是2009年以来经过的年数,2009年对应的t值为0(1)求,的解析式;(2)2021年开始,国家出台“稳定土地价格”的相关调控政策,为此,该市要求2026届的地价相对于2021年上涨幅度控制在10%以内,请分析比较以上两种增长方式,确定出最合适的一种模型.(参考数据:)18.国家质量监督检验检疫局于2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阀值与检验》国家标准.新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车,血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车.经过反复试验,喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如下:该函数模型如下:根据上述条件,回答以下问题:(1)试计算喝1瓶啤酒多少小时血液中的酒精含量达到最大值?最大值是多少?(2)试计算喝一瓶啤酒多少小时后才可以驾车?(时间以整小时计算)(参考数据:)19.已知长方体AC1中,棱AB=BC=3,棱BB1=4,连接B1C,过B点作B1C的垂线交CC1于E,交B1C于F.(1)求证A1C⊥平面EBD;(2)求二面角B1—BE—A1的正切值.20.为贯彻党中央、国务院关于“十三五”节能减排的决策部署,2022年某企业计划引进新能源汽车生产设备.通过市场分析,全年需投人固定成本2500万元,生产百辆需另投人成本万元.由于起步阶段生产能力有限,不超过120,且经市场调研,该企业决定每辆车售价为8万元,且全年内生产的汽车当年能全部销售完.(1)求2022年的利润(万元)关于年产量(百辆)的函数关系式(利润销售额-成本);(2)2022年产量多少百辆时,企业所获利润最大?并求出最大利润.21.如图所示,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=a,(1)求证:PD⊥平面ABCD;(2)求证:平面PAC⊥平面PBD;(3)求二面角P-AC-D的正切值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】建立如图所示的平面直角坐标系,则,设点P的坐标为,则故令,则t表示内(包括三条边上)上的一点与点间的距离的平方.结合图形可得当点与点B或C重合时t可取得最大值,且最大值为,故的最大值为.选A点睛:通过建立坐标系,将问题转化为向量的坐标运算可使得本题的解答代数化,在得到向量数量积的表达式后,根据表达式的特征再利用数形结合的思路求解是解题的关键,借助图形的直观性可容易得到答案2、D【解析】由交集的定义求解即可【详解】,由题意,作数轴如图:故,故选:D.3、C【解析】详解】,即,选.4、D【解析】直接利用集合运算法则得出结果【详解】因A=(1,3,5},B={1,2,3},所以则A∪B=2,3,,故选D【点睛】本题考查集合运算,注意集合中元素的的互异性,无序性5、A【解析】由已知可得:该几何体是一个四棱锥和四棱柱的组合体,其中棱柱的体积为:3×2×1=6,棱锥的体积为:×3×2×x=2x则组合体的体积V=6+2x=10,解得:x=2,故选A点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.6、A【解析】由中位数以及众数判断A;由百分位数的定义计算判断B;计算乙组数据的方差判断C;计算被抽中的30名学生每天平均阅读时间从而判断D.【详解】对于A,中位数为和众数相等,故A错误;对于B,将该组数据从小到大排列为,,则该组数据的分位数为5,故B正确;对于C,乙组数据,方差为,则这两组数据中较稳定的是乙,故C正确;对于D,被抽中的30名学生每天平均阅读时间为,故D正确;故选:A7、B【解析】利用可能平行判断,利用线面平行的性质判断,利用或与异面判断,与可能平行、相交、异面,判断.【详解】,,则可能平行,错;,,由线面平行的性质可得,正确;,,则,与异面;错,,,与可能平行、相交、异面,错,.故选B.【点睛】本题主要考查线面平行的判定与性质、线面面垂直的性质,属于中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.8、B【解析】由于不等式的基本性质,“a>b”⇒“ac>bc”必须有c>0这一条件.解:主要考查不等式的性质.当c=0时显然左边无法推导出右边,但右边可以推出左边.故选B考点:不等式的性质点评:充分利用不等式的基本性质是推导不等关系的重要条件9、D【解析】根据,由集合A,B有公共元素求解.【详解】集合,因为,所以集合A,B有公共元素,所以故选:D10、D【解析】由题意比较函数的性质及函数图象的特征,逐项判断即可得解.【详解】当x=1时,y=1+1+sin1=2+sin1>2,排除A、C;当x→+∞时,y→+∞,排除B.故选:D.【点睛】本题考查了函数图象的识别,抓住函数图象的差异是解题关键,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、(答案不唯一)【解析】根据题意可知函数关于对称,写出一个关于对称函数,再检验满足即可.【详解】由,可知函数关于对称,所以,又,满足.所以函数的解析式为(答案不唯一).故答案为:(答案不唯一).12、【解析】结合一元二次方程根的分布的知识列不等式组,由此求得的取值范围.【详解】令,依题意关于的方程有两实数根,,且,所以,即,解得.故答案为:13、【解析】由图可得;,则;由五点作图法可得,解得,所以其解析式为考点:1.三角函数的图像;2.五点作图法;14、【解析】根据题意,f(x)为奇函数,若f(2)=1,则f(−2)=-1,f(x)在(−∞,+∞)单调递增,且−1⩽f(x−2)⩽1,即f(-2)⩽f(x−2)⩽f(2),则有−2⩽x−2⩽2,解可得0⩽x⩽4,即x的取值范围是;故答案为.15、-2【解析】因为向量与平行,所以存在,使,所以,解得答案:16、【解析】分析可知对任意的、且恒成立,且对任意的、且有解,进而可得出关于实数的不等式组,由此可解得实数的取值范围.详解】,因为,由可得,由题意可得对任意的、且恒成立,且对任意的、且有解,即,即恒成立,或有解,因为、且,则,若恒成立,则,解得;若或有解,则或,解得或;因此,实数的取值范围是.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;,(2)分析比较见解析;应该选择模型【解析】(1)由,求得;由,求得;(2)分别由,,,算出直线和对数增长的增长率与10%比较即可.【小问1详解】解:由题知:,,所以,解得:,所以,;又,,所以,解得:,所以,;【小问2详解】若按照模型,到2026届时,,,直线上升的增长率为,不符合要求;若按照模型,到2026届时,,,对数增长的增长率为,符合要求;综上分析,应该选择模型18、(1)喝1瓶啤酒后1.5小时血液中的酒精含量达到最大值53毫克/百毫升;(2)喝1瓶啤酒后需6小时后才可以驾车.【解析】(1)由图可知,当函数取得最大值时,,此时,当,即时,函数取得最大值为.故喝1瓶啤酒后1.5小时血液中的酒精含量达到最大值53毫克/百毫升.(2)由题意知,当车辆驾驶人员血液中的酒精小于20毫克/百毫升时可以驾车,此时.由,得:,两边取自然对数得:即,∴,故喝1瓶啤酒后需6小时后才可以驾车.19、(1)证明见解析(2)【解析】(1)先证明平面,则,再证明平面,则,从而即可证明A1C⊥平面EBD;(2)由平面,又,则,进而可得是二面角平面角,在中,求出,即可在中求出,从而即可得答案.【小问1详解】证明:平面,,又,,平面,,又平面,,且,,平面,,又,A1C⊥平面EBD;【小问2详解】解:平面,又,是二面角的平面角,在中,,在中,,.20、(1)(2)2022年产量为100百辆时,企业所获利润最大,最大利润为1600万元【解析】(1)直接由题意分类写出2022年的利润(万元)关于年产量(百辆)的函数关系式;(2)分别利用配方法与基本不等式求出两段函数的最大值,求最大值中的最大者得结论【小问1详解】由题意得:当年产量为百辆时,全年销售额为万元,则,所以当时,当时,,所以【小问2详解】由(1)知:当时,,所以当时,取得最大值,最大值为1500万元;当时,,当且仅当,即时等号成立,因为,所以2022年产量为100百辆时,企业所获利润最大,最大利润为1600万元.21、(1)见解析(2)见解析(3)【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论