赤峰市重点中学2026届高二上数学期末质量检测试题含解析_第1页
赤峰市重点中学2026届高二上数学期末质量检测试题含解析_第2页
赤峰市重点中学2026届高二上数学期末质量检测试题含解析_第3页
赤峰市重点中学2026届高二上数学期末质量检测试题含解析_第4页
赤峰市重点中学2026届高二上数学期末质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

赤峰市重点中学2026届高二上数学期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,已知最底层正方体的棱长为a,上层正方体下底面的四个顶点是下层正方体上底面各边的中点,依此方法一直继续下去,则所有这些正方体的体积之和将趋近于()A. B.C. D.2.已知一质点的运动方程为,其中的单位为米,的单位为秒,则第1秒末的瞬时速度为()A. B.C. D.3.给出命题:若函数是幂函数,则函数的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是()A.3 B.2C.1 D.04.在平面直角坐标系xOy中,过x轴上的点P分别向圆和圆引切线,记切线长分别为.则的最小值为()A.2 B.3C.4 D.55.已知斜三棱柱所有棱长均为2,,点、满足,,则()A. B.C.2 D.6.在等差数列{an}中,a1=2,a5=3a3,则a3等于()A.-2 B.0C.3 D.67.正方体的棱长为2,E,F,G分别为,AB,的中点,则直线ED与FG所成角的余弦值为()A. B.C. D.8.等差数列中,若,则()A.42 B.45C.48 D.519.已知双曲线,点F为其左焦点,点B,若BF所在直线与双曲线的其中一条渐近线垂直,则该双曲线的离心率为()A. B.C. D.10.在中,角A,B,C所对的边分别为a,b,c,,则的形状为()A.正三角形 B.等腰直角三角形C.直角三角形 D.等腰三角形11.抛物线的准线方程是A.x=1 B.x=-1C. D.12.设,,若,其中是自然对数底,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列的前项和为,若,,则数列的前2021项和为___________.14.曲线在点处的切线与坐标轴围成的三角形面积为__________.15.已知数列的前项和为,,则___________,___________.16.如图,在等腰直角△ABC中,,点P是边AB上异于A、B的一点,光线从点P出发,经BC、CA反射后又回到原点P.若光线QR经过△ABC的内心,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)公差不为零的等差数列中,已知其前n项和为,若,且成等比数列(1)求数列的通项;(2)当时,求数列的前n和18.(12分)已知为坐标原点,椭圆的左右焦点分别为,,为椭圆的上顶点,以为圆心且过的圆与直线相切.(1)求椭圆的标准方程;(2)已知直线交椭圆于两点.(ⅰ)若直线的斜率等于,求面积的最大值;(ⅱ)若,点在上,.证明:存在定点,使得为定值.19.(12分)已知双曲线与有相同的渐近线,且经过点.(1)求双曲线的方程;(2)已知直线与双曲线交于不同的两点,且线段的中点在圆上,求实数的值.20.(12分)已知函数(Ⅰ)求的单调区间和最值;(Ⅱ)设,证明:当时,21.(12分)已知抛物线的焦点为F,点在抛物线上.(1)求抛物线的标准方程;(2)过点的直线交抛物钱C于A,B两点,O为坐标原点,记直线OA,OB的斜率分别,,求证:为定值.22.(10分)已知点,圆(1)若过点的直线与圆相切,求直线的方程;(2)若直线与圆相交于A,两点,弦的长为,求的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由已知可判断出所有这些正方体的体积构成首项为,公比为的等比数列,然后求和可得答案.【详解】最底层上面第一个正方体的棱长为,其体积为,上面第二个正方体的棱长为,其体积为,上面第三个正方体的棱长为,其体积为,所有这些正方体的体积构成首项为,公比为的等比数列,其前项和为,当,,所以所有这些正方体的体积之和将趋近于.故选:D.2、C【解析】求出即得解.【详解】解:由题意得,故质点在第1秒末的瞬时速度为.故选:C3、C【解析】若函数是幂函数,则函数的图象不过第四象限,原命题是真命题,则其逆否命题也是真命题;其逆命题为:若函数的图象不过第四象限,则函数是幂函数是假命题,所以原命题的否命题也是假命题.故它的逆命题、否命题、逆否命题三个命题中,真命题有一个.选C4、D【解析】利用两点间的距离公式,将切线长的和转化为到两圆心的距离和,利用三点共线距离最小即可求解.详解】,圆心,半径,圆心,半径设点P,则,即到与两点距离之和的最小值,当、、三点共线时,的和最小,即的和最小值为.故选:D【点睛】本题考查了两点间的距离公式,需熟记公式,属于基础题.5、D【解析】以向量为基底向量,则,根据条件由向量的数量积的运算性质,两边平方可得答案.【详解】以向量为基底向量,所以所以故选:D6、A【解析】利用已知条件求得,由此求得.【详解】a1=2,a5=3a3,得a1+4d=3(a1+2d),即d=-a1=-2,所以a3=a1+2d=-2.故选:A.7、B【解析】建立空间直角坐标系,利用空间向量坐标运算即可求解.【详解】如图所示建立适当空间直角坐标系,故选:B8、C【解析】结合等差数列的性质求得正确答案.【详解】依题意是等差数列,,.故选:C9、C【解析】设出双曲线半焦距c,利用斜率坐标公式结合垂直关系列式计算作答.【详解】设双曲线半焦距为c,则,直线BF的斜率为,双曲线的渐近线为:,因直线BF与双曲线的一条渐近线垂直,则有,即,于是得,而,解得,所以双曲线的离心率为.故选:C10、C【解析】根据三角恒等变换结合正弦定理化简求得,即可判定三角形形状.【详解】解:由题,得,即,由正弦定理可得:,所以,所以三角形中,所以,又,所以,即三角形为直角三角形.故选:C.11、C【解析】先把抛物线方程整理成标准方程,进而求得p,再根据抛物线性质得出准线方程【详解】解:整理抛物线方程得,∴p=∵抛物线方程开口向上,∴准线方程是y=﹣故答案为C【点睛】本题主要考查抛物线的标准方程和简单性质.属基础题12、A【解析】利用函数的单调性可得正确的选项.【详解】令,因为均为,故为上的增函数,由可得,故,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意求出,代入中,再利用裂项相消即可求出答案.【详解】由是等差数列且,可知:,故.,数列的前2021项和为.故答案为:.14、【解析】运用导数的几何意义进行求解即可.【详解】由,所以,而,所以切线方程为:,令,得,令,得,所以三角形的面积为:,故答案为:15、①.②.【解析】第一空:由,代入已知条件,即可解得结果;第二空:由与关系可推导出之间的关系,再由递推公式即可求出通项公式.【详解】,可得由,可知时,故时即可化为又故数列是首项为公比为2的等比数列,故数列的通项公式故答案为:①;②16、【解析】以为坐标原点建立空间直角坐标系,设出点的坐标,求得△的内心坐标,根据△内心以及关于的对称点三点共线,即可求得点的坐标,则问题得解.【详解】根据题意,以为坐标原点,建立平面直角坐标系,设点关于直线的对称点为,关于轴的对称点为,如下所示:则,不妨设,则直线的方程为,设点坐标为,则,且,整理得,解得,即点,又;设△的内切圆圆心为,则由等面积法可得,解得;故其内心坐标为,由及△的内心三点共线,即,整理得,解得(舍)或,故.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据等差数列的性质,结合题意,可求得值,根据成等比数列,即可求得d值,代入等差数列通项公式,即可得答案;(2)由(1)可求得,即可得表达式,根据裂项相消求和法,即可得答案.【小问1详解】设等差数列的公差为,由等差数列性质可得,解得,又成等比数列,所以,整理得,因为,所以,所以【小问2详解】由(1)可得,则,所以,所以18、(1);(2)(ⅰ);(ⅱ).【解析】(1)求出后可得椭圆的标准方程.(2)(ⅰ)设直线的方程为:,,联立直线方程和椭圆方程,利用韦达定理、弦长公式可求面积表达式,利用基本不等式可求面积的最大值.(ⅱ)利用韦达定理化简可得,从而可得的轨迹为圆,故可证存在定点,使得为定值.【详解】(1)由题意知:,,又,则以为圆心且过的圆的半径为,故,所以椭圆的标准方程为:.(2)(ⅰ)设直线的方程为:,将代入得:,所以且,故.又,点到直线的距离,所以,等号当仅当时取,即当时,的面积取最大值为.(ⅱ)显然直线的斜率一定存在,设直线的方程为:,,由(ⅰ)知:所以,所以,解得,,直线过定点或,所以D在以OZ为直径的圆上,该圆的圆心为或,半径等于,所以存在定点或,使得为定值.【点睛】方法点睛:求椭圆的标准方程,关键是基本量的确定,方法有待定系数法、定义法等.直线与圆锥曲线的位置关系中的定点、定值、最值问题,一般可通过联立方程组并消元得到关于或的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有或,最后利用韦达定理把关系式转化为若干变量的方程(或函数),从而可求定点、定值、最值问题.19、(1)(2)【解析】(1)根据所求双曲线与有共同的渐近线可设出所求双曲线方程为,在根据点在双曲线上,代入双曲线方程中即可求解.(2)联立直线与双曲线的方程,得关于的一元二次方程,利用韦达定理得出的关系,再根据中点坐标公式求出线段的中点的坐标,代入圆方程即可求解.【小问1详解】由题意,设双曲线的方程为,则又因为双曲线过点,,所以双曲线的方程为:【小问2详解】由,消去整理,得,设,则因为直线与双曲线交于不同的两点,所以,解得.,所以则中点坐标为,代入圆得,解得.实数的值为20、(Ⅰ)单调递减区间为,单调递增区间为;最小值为,无最大值;(Ⅱ)证明见解析【解析】(Ⅰ)根据导函数的正负即可确定单调区间,由单调性可得最值点;(Ⅱ)构造函数,利用导数可确定单调性,结合的正负可确定的零点的范围,进而得到结论.【详解】(Ⅰ)由题意得:定义域为,,当时,;当时,;的单调递减区间为,单调递增区间为的最小值为,无最大值(Ⅱ)设,则,令得:当时,;当时,,在上单调递增;在上单调递减由(Ⅰ)知:,可得:,,可得:,即又,当时,,即当时,【点睛】思路点睛:本题考查导数在研究函数中的应用,涉及到函数单调性和最值的求解、利用导数证明不等式等知识;利用导数证明不等式的关键是能够通过移项构造的方式,构造出新的函数,通过的单调性,结合零点所处的范围可分析得到结果.21、(1)(2)证明见解析【解析】(1)将点代入抛物线方程即可求解;(2)当直线AB的斜率存在时,设直线AB的方程为,,将直线方程与抛物线方程联立利用韦达定理即可求出的值;当直线AB的斜率不存在时,由过点即可求出点和点的坐标,即可求出的值.【小问1详解】将点代入得,,∴抛物线的标准方程为.【小问2详解】当直线AB斜率存在时,设直线AB的方程为,,将联立得,,由韦达定理得:,,,当直线AB的斜率不存在时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论