版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市新川中学2026届高一上数学期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数在区间上为减函数,在区间上为增函数,则A.3 B.2C. D.2.已知,,,则,,的大小关系为()A. B.C. D.3.已知,,,则下列关系中正确的是A. B.C. D.4.已知,则函数()A. B.C. D.5.已知,则下列说法正确的是()A.有最大值0 B.有最小值为0C.有最大值为-4 D.有最小值为-46.已知函数,若函数有3个零点,则实数m的取值范围()A. B.C.(0,1) D.7.已知向量=(1,2),=(2,x),若⊥,则|2+|=()A. B.4C.5 D.8.下列区间中,函数f(x)=|ln(2-x)|在其上为增函数的是()A. B.C. D.9.集合{|是小于4的正整数},,则如图阴影部分表示的集合为()A. B.C. D.10.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若坐标原点在圆的外部,则实数m的取值范围是___12.在区间上随机取一个实数,则事件发生的概率为_________.13.圆柱的侧面展开图是边长分别为的矩形,则圆柱的体积为_____________14.已知扇形的面积为4,圆心角为2弧度,则该扇形的弧长为_________15.已知tanα=3,则sinα(cosα-sinα)=______16.已知函数(且),若对,,都有.则实数a的取值范围是___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数(且)(1)若函数存在零点,求实数的最小值;(2)若函数有两个零点分别是,且对于任意的时恒成立,求实数的取值集合.18.如图,在等腰梯形中,,(1)若与共线,求k的值;(2)若P为边上的动点,求的最大值19.已知两条直线l1:ax+2y-1=0,l2:3x+(a+1)y+1=0.(1)若l1∥l2,求实数a的值;(2)若l1⊥l2,求实数a的值20.如图,正方形的边长为,,分别为边和上的点,且的周长为2.(1)求证:;(2)求面积的最小值.21.已知集合,.(1)求,;(2)已知集合,若,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由题意得当时,函数取得最小值,∴,∴又由条件得函数的周期,解得,∴.选C2、B【解析】通过计算可知,,,从而得出,,的大小关系.【详解】解:因为,所以,,所以.故选:B.3、C【解析】利用函数的单调性、正切函数的值域即可得出【详解】,,∴,又∴,则下列关系中正确的是:故选C【点睛】本题考查了指对函数的单调性、三角函数的单调性的应用,属于基础题4、A【解析】根据,令,则,代入求解.【详解】因为已知,令,则,则,所以,‘故选:A5、B【解析】由均值不等式可得,分析即得解【详解】由题意,,由均值不等式,当且仅当,即时等号成立故,有最小值0故选:B6、C【解析】函数有3个零点,所以有三个实根,即直线与函数的图象有三个交点,作出图象,即可求出实数的取值范围【详解】因为函数有3个零点,所以有三个实根,即直线与函数的图象有三个交点作出函数图象,由图可知,实数的取值范围是故选:C.7、C【解析】根据求出x的值,再利用向量的运算求出的坐标,最后利用模长公式即可求出答案【详解】因为,所以解得,所以,因此,故选C【点睛】本题主要考查向量的坐标预算以及模长求解,还有就是关于向量垂直的判定与性质8、D【解析】函数定义域为当时,是减函数;当时,是增函数;故选D9、B【解析】先化简集合A,再判断阴影部分表示的集合为,求交集即得结果.【详解】依题意,,阴影部分表示的集合为.故选:B.10、D【解析】根据正四棱柱的几何特征得:该球的直径为正四棱柱的体对角线,故,即得,所以该球的体积,故选D.考点:正四棱柱的几何特征;球的体积.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】方程表示圆,得,根据点在圆外,得不等式,解不等式可得结果.【详解】圆的标准方程为,则,若坐标原点在圆的外部,则,解得,则实数m的取值范围是,故答案为:【点睛】本题考查圆的一般方程,考查点与圆的位置关系的应用,属于简单题.12、【解析】由得:,∵在区间上随机取实数,每个数被取到的可能性相等,∴事件发生的概率为,故答案为考点:几何概型13、或【解析】有两种形式的圆柱的展开图,分别求出底面半径和高,分别求出体积.【详解】圆柱的侧面展开图是边长为2a与a的矩形,当母线为a时,圆柱的底面半径是,此时圆柱体积是;当母线为2a时,圆柱的底面半径是,此时圆柱的体积是,综上所求圆柱的体积是:或,故答案为或;本题考查圆柱的侧面展开图,圆柱的体积,容易疏忽一种情况,导致错误.14、4【解析】设扇形半径为,弧长为,则,解得考点:角的概念,弧度的概念15、【解析】利用同角三角函数基本关系式化简所求,得到正切函数的表达式,根据已知即可计算得解【详解】解:∵tanα=3,∴sinα(cosα﹣sinα)故答案为【点睛】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基本知识的考查16、【解析】由条件可知函数是增函数,可得分段函数两段都是增函数,且时,满足,由不等式组求解即可.【详解】因为对,且都有成立,所以函数在上单调递增.所以,解得.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由题意列出不等式组,令,求出对称轴,若在区间上有解,则解不等式即可求得k的范围;(2)由韦达定理计算得,利用指数函数单调性解不等式,化简得,令,求出函数在区间上的值域从而求得m的取值范围.【详解】(1)由题意知有解,则有解,①③成立时,②显然成立,因此令,对称轴为:当时,在区间上单调递减,在区间上单调递增,因此若在区间上有解,则,解得,又,则,k得最小值为;(2)由题意知是方程的两根,则,,联立解得,解得,所以在定义域内单调递减,由可得对任意的恒成立,化简得,令,,对成立,所以在区间上单调递减,,所以【点睛】本题考查函数与方程,二次函数的图像与性质,考查韦达定理,求解指数型不等式,导数证明不等式,属于较难题.18、(1);(2)12【解析】(1)选取为基底,用基底表示其他向量后,由向量共线可得;(2)设,,求得,由函数知识得最大值【详解】(1)不共线,以它们为基底,由已知,又与共线,所以存在实数,使得,即,解得;(2)等腰梯形中,,,则,设,,则,,所以时,取得最大值12【点睛】关键点点睛:本题考查向量的共线,向量的数量积,解题关键是以为基底,其它向量都用基底表示,然后求解计算19、(1)a=2(2)【解析】(1)利用直线与直线平行的条件直接求解;(2)利用直线与直线垂直的条件直接求解【详解】(1)由题可知,直线l1:ax+2y-1=0,l2:3x+(a+1)y+1=0.若l1∥l2,则解得a=2或a=-3(舍去)综上,则a=2;(2)由题意,若l1⊥l2,则,解得.【点睛】本题考查实数值的求法,考查直线与直线平行与垂直的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题20、(1)证明见解析;(2).【解析】(1)补形得证明其与全等,从而得证.(2)引进参数,由已知建立参数变量之间的等量关系,再用方程根的判别式获得变量最值,进一步得到所求面积最值.【详解】(1)如图:延长至,使,连接,则.故,,.又.,即.(2)设,,,则,,,于是,整理得:,.即.又,,当且仅当时等式成立.此时,因此当,时,取最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论