版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古鄂尔多斯市2026届数学高二上期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛掷一枚质地均匀的骰子两次,记{两次的点数均为奇数},{两次的点数之和为8},则()A. B.C. D.2.甲组数据为:5,12,16,21,25,37,乙组数据为:1,6,14,18,38,39,则甲、乙的平均数、极差及中位数相同的是()A.极差 B.平均数C.中位数 D.都不相同3.用这3个数组成没有重复数字的三位数,则事件“这个三位数是偶数”与事件“这个三位数大于342”()A.是互斥但不对立事件 B.不是互斥事件C.是对立事件 D.是不可能事件4.已知直线过点,,则该直线的倾斜角是()A. B.C. D.5.已知函数的导数为,则等于()A.0 B.1C.2 D.46.抛物线的焦点到直线的距离()A. B.C.1 D.27.已知,,若不等式恒成立,则正数的最小值是()A.2 B.4C.6 D.88.在四面体中,点G是的重心,设,,,则()A. B.C. D.9.设是等差数列的前项和,已知,,则等于()A. B.C. D.10.已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,角终边上有一点,为锐角,且,则()A. B.C. D.11.函数有两个不同的零点,则实数的取值范围是()A. B.C. D.12.命题“,”的否定是()A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.若方程表示焦点在y轴上的双曲线,则实数k的取值范围是______14.已知p:≤0,q:4x+2x-m≤0,若p是q的充分条件,则实数m的取值范围是________15.命题的否定是____________________.16.若、是双曲线的左右焦点,过的直线与双曲线的左右两支分别交于,两点.若为等边三角形,则双曲线的离心率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若在处取得极值,求在处的切线方程;(2)讨论的单调性;(3)若函数在上无零点,求实数的取值范围.18.(12分)若函数在区间上的最大值为9,最小值为1.(1)求a,b的值;(2)若方程在上有两个不同的解,求实数k的取值范围.19.(12分)在平面直角坐标系xOy中,已知椭圆的左、右焦点分别是,,离心率,请再从下面两个条件中选择一个作为已知条件,完成下面的问题:①椭圆C过点;②以点为圆心,3为半径的圆与以点为圆心,1为半径的圆相交,且交点在椭圆C上(只能从①②中选择一个作为已知)(1)求椭圆C的方程;(2)已知过点的直线l交椭圆C于M,N两点,点N关于x轴的对称点为,且,M,三点构成一个三角形,求证:直线过定点,并求面积的最大值.20.(12分)已知抛物线的焦点为,直线与抛物线的准线交于点,为坐标原点,(1)求抛物线的方程;(2)直线与抛物线交于,两点,求的面积21.(12分)如图,四边形为矩形,,,为的中点,与交于点,平面.(1)若,求与所成角的余弦值;(2)若,求直线与平面所成角的正弦值.22.(10分)已知数列是公差不为0的等差数列,数列是公比为2的等比数列,是,的等比中项,,.(1)求数列,的通项公式;(2)求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用条件概率公式进行求解.【详解】,其中表示:两次点数均为奇数,且两次点数之和为8,共有两种情况,即,故,而,所以,故选:B2、B【解析】由平均数、极差及中位数的定义依次求解即可比较【详解】,,故甲、乙的平均数相同,甲、乙的极差分别为,,故不同,甲、乙的中位数分别为,,故不同,故选:3、B【解析】根据题意列举出所有可能性,进而根据各类事件的定义求得答案.【详解】由题意,将2,3,4组成一个没有重复数字的三位数的情况有:{234,243,324,342,423,432},其中偶数有{234,324,342,432},大于342的有{423,432}.所以两个事件不是互斥事件,也不是对立事件.故选:B.4、C【解析】根据直线的斜率公式即可求得答案.【详解】设该直线的倾斜角为,该直线的斜率,即.故选:C5、A【解析】先对函数求导,然后代值计算即可【详解】因为,所以.故选:A6、B【解析】由抛物线可得焦点坐标,结合点到直线的距离公式,即可求解.【详解】由抛物线可得焦点坐标为,根据点到直线的距离公式,可得,即抛物线的焦点到直线的距离为.故选:B.7、B【解析】由基本不等式求出的最小值,只需最小值大于等于18,得到关于的不等式,求解,即可得出结论.【详解】,因为不等式恒成立,所以,即,解得,所以.故选:B.【点睛】本题考查基本不等式的应用,考查一元二次不等式的解法,属于基础题.8、B【解析】结合重心的知识以及空间向量运算求得正确答案.【详解】设是中点,.故选:B9、C【解析】依题意有,解得,所以.考点:等差数列的基本概念.【易错点晴】本题主要考查等差数列的基本概念.在解有关等差数列的问题时可以考虑化归为和等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量、,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算10、C【解析】根据角终边上有一点,得到,再根据为锐角,且,求得,再利用两角差的正切函数求解.【详解】因为角终边上有一点,所以,又因为为锐角,且,所以,所以,故选:C11、B【解析】方程有两个根,转化为求函数的单调性与极值【详解】函数定义域是,有两个零点,即有两个不等实根,即有两个不等实根设,则,时,,递减,时,,递增,极小值=,而时,,时,,所以故选:B12、D【解析】根据含一个量词的命题的否定方法:修改量词,否定结论,直接得到结果.【详解】命题“,”的否定是“,”.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题可得,即求.【详解】因为方程表示焦点在轴上的双曲线,则,解得.故答案为:.14、m≥6【解析】分别求出p,q成立的等价条件,利用p是q的充分条件,转为当0<x≤1时,m大于等于的最大值,求出最值即可确定m的取值范围【详解】由,得0<x≤1,即p:0<x≤1由4x+2x﹣m≤0得4x+2x≤m因为,要使p是q的充分条件,则当0<x≤1时,m大于等于的最大值,令,则在上单调递增,故当时取到最大值6,所以m≥6故答案为:m≥6【点睛】本题主要考查充分条件和必要条件的应用,考查函数的最值,考查转化的思想,属于基础题15、##【解析】根据全称量词命题的否定的知识写出正确答案.【详解】全称量词命题的否定是存在量词命题,要注意否定结论,所以命题否定是:故答案为:16、【解析】根据双曲线的定义算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等边三角形得∠F1AF2=120°,利用余弦定理算出c=a,结合双曲线离心率公式即可算出双曲线C的离心率.【详解】因为△ABF2为等边三角形,可知,A为双曲线上一点,,B为双曲线上一点,则,即,∴由,则,已知,在△F1AF2中应用余弦定理得:,得c2=7a2,则e2=7⇒e=故答案为:【点睛】方法点睛:求双曲线的离心率,常常不能经过条件直接得到a,c的值,这时可将或视为一个整体,把关系式转化为关于或的方程,从而得到离心率的值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析;(3).【解析】(1)根据在处取极值可得,可求得,验证可知满足题意;根据导数的几何意义求得切线斜率,利用点斜式可求得切线方程;(2)求导后,分别在和两种情况下讨论导函数的符号,从而得到的单调性;(3)根据在上无零点可知在上的最大值和最小值符号一致;分别在,两种情况下根据函数的单调性求解最大值和最小值,利用符号一致构造不等式求得结果.【详解】(1)由题意得:在处取极值,解得:则当时,,单调递减;当时,,单调递增为极小值点,满足题意函数当时,由得:在处的切线方程为:,即:(2)由题意知:函数的定义域为,①当时若,恒成立,恒成立在内单调递减②当时由,得:;由得:在内单调递减,在内单调递增综上所述:当时,在内单调递减;当时,在内单调递减,在内单调递增(3)①当时,在上单调递减在上无零点,且②当时(i)若,即,则在上单调递增由,知符合题意(ii)若,即,则在上单调递减在上无零点,且(iii)若,即,则在上单调递减,在上单调递增,,符合题意综上所述,实数的取值范围是【点睛】本题考查导数在研究函数中的应用问题,涉及到导数几何意义、极值与导数的关系、讨论含参数函数的单调性、根据区间内零点个数求解参数范围问题.本题的关键是能够通过分类讨论的方式,确定导函数的符号,从而判断出函数的单调性以及最值.18、(1)(2)【解析】(1)令,则,根据二次函数的性质即可求出;(2)令,方程化为,求出的变化情况即可求出.【小问1详解】令,则,则题目等价于在的最大值为9,最小值为1,对称轴,开口向上,则,解得;【小问2详解】令,则,于是方程可变为,即,因为函数在单调递减,在单调递增,且,要使方程有两个不同的解,则与有两个不同的交点,所以.19、(1)(2)证明见解析,【解析】(1)若选①,则由题意可得,解方程组求出,从而可求得椭圆方程,若选②,,再结合离心率和求出,从而可求得椭圆方程,(2)由题意设直线MN的方程为,设,,,将直线方程代入椭圆方程中,消去,再利用根与系数的关系,表示出直线的方程,令,求出,结合前面的式子化简可得线过的定点,表示出的面积,利用基本不等式可求得其最大值【小问1详解】若选①:由题意知,∴.所以椭圆C的方程为.若选②:设圆与圆相交于点Q.由题意知:.又因为点Q在椭圆上,所以,∴.又因为,∴,∴.所以椭圆C的方程为.【小问2详解】由题易知直线MN斜率存在且不为0,因为,故设直线MN方程为,设,,,∴,∴,,因为点N关于x轴对称点为,所以,所以直线方程为,令,∴.又,∴.所以直线过定点,∴.当且仅当,即时,取等号.所以面积的最大值为.20、(1)(2)【解析】(1)根据题意建立关于的方程,解得的值即可.(2)联列方程组并消元,韦达定理整体思想求的长,再求点到直线的距离,进而求面积.【小问1详解】由题意可得,,则,因为,所以,解得,故抛物线的方程为【小问2详解】由(1)可知,则点到直线的距离联立,整理得设,,则,从而因为直线过抛物线的焦点,所以故的面积为21、(1)(2)【解析】(1)以为原点,、所在的直线为、轴,以过点垂直于面的直线为轴,建立空间直角坐标系,利用空间向量法可求得与所成角的余弦值;(2)计算出平面的法向量,利用空间向量法可求得直线与平面所成角的正弦值.【小问1详解】解:如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年幼儿故事会春节的快乐传统
- 2025年中职汽车修理(变速箱维修)试题及答案
- 2025年高职国际贸易实务(进出口业务操作)试题及答案
- 2025年大学大三(新能源科学与工程)新能源利用技术开发阶段测试题及答案
- 2025年大学护理学(妇产科用药护理)试题及答案
- 2025年大学第三学年(食品添加剂)应用技术阶段测试题及答案
- 2025年大学三年级(食品科学与工程)食品质量安全检测试题及答案
- 2025年高职(旅游资源开发)资源评估单元测试试题及答案
- 2025年大学医学(临床护理)试题及答案
- 2025年大学第三学年(历史学)世界古代史中世纪时期试题及答案
- 2026年乡村医生传染病考试题含答案
- 新零售模式下人才培养方案
- 上海市徐汇区2026届初三一模化学试题(含答案)
- 2025年辽铁单招考试题目及答案
- 医疗行业数据安全事件典型案例分析
- 2026年生物医药创新金融项目商业计划书
- 湖南名校联考联合体2026届高三年级1月联考化学试卷+答案
- 龟的解剖课件
- 山东省潍坊市2024-2025学年二年级上学期期末数学试题
- 空气源热泵供热工程施工方案
- 2026届潍坊市重点中学高一化学第一学期期末教学质量检测试题含解析
评论
0/150
提交评论