2026届广元市重点中学高二上数学期末经典模拟试题含解析_第1页
2026届广元市重点中学高二上数学期末经典模拟试题含解析_第2页
2026届广元市重点中学高二上数学期末经典模拟试题含解析_第3页
2026届广元市重点中学高二上数学期末经典模拟试题含解析_第4页
2026届广元市重点中学高二上数学期末经典模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届广元市重点中学高二上数学期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.南宋数学家杨辉在《详解九章算术法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般的等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次成等差数列.如数列1,3,6,10,前后两项之差组成新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.现有二阶等差数列,其前7项分别为2,3,5,8,12,17,23,则该数列的第31项为()A.336 B.467C.483 D.6012.已知椭圆及以下3个函数:①;②;③,其中函数图象能等分该椭圆面积的函数个数有()A.0个 B.1个C.2个 D.3个3.设等比数列的前项和为,且,则()A. B.C. D.4.若实数x,y满足不等式组,则的最小值为()A. B.0C. D.25.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校男教师的人数为()A.167 B.137C.123 D.1136.已知,则的大小关系为()A. B.C. D.7.如图,P为圆锥的顶点,O是圆锥底面的圆心,圆锥PO的轴截面PAE是边长为2的等边三角形,是底面圆的内接正三角形.则()A. B.C. D.8.已知椭圆的左,右两个焦点分别为,若椭圆C上存在一点A,满足,则椭圆C的离心率的取值范围是()A. B.C. D.9.已知随机变量服从正态分布,且,则()A.0.1 B.0.2C.0.3 D.0.410.设双曲线()的焦距为12,则()A.1 B.2C.3 D.411.给出下列判断,其中正确的是()A.三点唯一确定一个平面B.一条直线和一个点唯一确定一个平面C.两条平行直线与同一条直线相交,三条直线在同一平面内D.空间两两相交的三条直线在同一平面内12.已知数列为等差数列,若,则()A.1 B.2C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知直线与直线平行,则实数______14.已知O为坐标原点,椭圆T:,过椭圆上一点P的两条直线PA,PB分别与椭圆交于A,B,设PA,PB的中点分别为D,E,直线PA,PB的斜率分别是,,若直线OD,OE的斜率之和为2,则的最大值为_______15.某工厂年前加紧手套生产,设该工厂连续5天生产的手套数依次为,,,,(单位:万只),若这组数据,,,,的方差为4,且,,,,的平均数为8,则该工厂这5天平均每天生产手套______万只16.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列为等差数列,为其前n项和,若,(1)求数列的首项和公差;(2)求的最小值.18.(12分)一个长方体的平面展开图及该长方体的直观图的示意图如图所示(1)请将字母F,G,H标记在长方体相应的顶点处(不需说明理由):(2)若且有下面两个条件:①;②,请选择其中一个条件,使得DF⊥平面,并证明你的结论19.(12分)如图,在四棱锥S−ABCD中,底面ABCD为矩形,,AB=2,,平面,,,E是SA的中点(1)求直线EF与平面SCD所成角的正弦值;(2)在直线SC上是否存在点M,使得平面MEF平面SCD?若存在,求出点M的位置;若不存在,请说明理由20.(12分)(1)求焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程;(2)求经过点的抛物线的标准方程;21.(12分)已知为数列的前项和,且(1)求数列的通项公式;(2)若,求数列的前项和(3)设,若不等式对一切恒成立,求实数取值范围22.(10分)如图,在四棱锥中,,为的中点,连接.(1)求证:平面;(2)求平面与平面的夹角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先由递推关系利用累加法求出通项公式,直接带入即可求得.【详解】根据题意,数列2,3,5,8,12,17,23……满足,,所以该数列的第31项为.故选:B2、C【解析】由椭圆的几何性质可得椭圆的图像关于原点对称,因为函数,函数为奇函数,其图像关于原点对称,则①②满足题意,对于函数在轴右侧时,,只有时,,即函数在轴右侧的图像显然不能等分椭圆在轴右侧的图像的面积,又函数为偶函数,其图像关于轴对称,则函数在轴左侧的图像显然也不能等分椭圆在轴左侧的图像的面积,即函数的图像不能等分该椭圆面积,得解.【详解】解:因为椭圆的图像关于原点对称,对于①,函数为奇函数,其图像关于原点对称,即可知的图象能等分该椭圆面积;对于②,函数为奇函数,其图像关于原点对称,即可知的图象能等分该椭圆面积;对于③,对于函数在轴右侧时,,只有时,,即函数在轴右侧的图像(如图)显然不能等分椭圆在轴右侧的图像的面积,又函数为偶函数,其图像关于轴对称,则函数在轴左侧的图像显然也不能等分椭圆在轴左侧的图像的面积,即函数的图像不能等分该椭圆面积,即函数图象能等分该椭圆面积的函数个数有2个,故选C.【点睛】本题考查了椭圆的几何性质、函数的奇偶性及函数的对称性,重点考查了函数的性质,属基础题.3、C【解析】根据给定条件求出等比数列公比q的关系,再利用前n项和公式计算得解.【详解】设等比数列的的公比为q,由得:,解得,所以.故选:C4、A【解析】画出可行域,令,则,结合图形求出最小值,即可得解;【详解】解:画出不等式组,表示的平面区域如图阴影部分所示,由,解得,即,令,则.结合图形可知当过点时,取得最小值,且,即故选:A5、C【解析】根据图形分别求出初中部和高中部男教师的人数,最后相加即可.【详解】初中部男教师的人数为110×(170%)=33;高中部男教师的人数为150×60%=90,∴该校男教师的人数为33+90=123.故选:C.6、B【解析】构造利用导数判断函数在上单调递减,利用单调性比较大小【详解】设恒成立,函数在上单调递减,.故选:B7、B【解析】先求出,再利用向量的线性运算和数量积计算求解.【详解】解:由题得,,故选:B8、C【解析】根据题意可知当A为椭圆的上下顶点时,即可满足椭圆C上存在一点A,使得,由此可得,解此不等式可得答案.【详解】由椭圆的对称性可知,当A为椭圆的上下顶点时,最大,故只需即可满足题意,设O为坐标原点,则只需,即有,所以,解得,故选:C9、A【解析】利用正态分布的对称性和概率的性质即可【详解】由,且则有:根据正态分布的对称性可知:故选:A10、B【解析】根据可得关于的方程,解方程即可得答案.【详解】因为可化为,所以,则.故选:B.【点睛】本题考查已知双曲线的焦距求参数的值,考查函数与方程思想,考查运算求解能力,属于基础题.11、C【解析】根据确定平面的条件可对每一个选项进行判断.【详解】对A,如果三点在同一条直线上,则不能确定一个平面,故A错误;对B,如果这个点在这条直线上,就不能确定一个平面,故B错误;对C,两条平行直线确定一个平面,一条直线与这两条平行直线都相交,则这条直线就在这两条平行直线确定的一个平面内,故这三条直线在同一平面内,C正确;对D,空间两两相交的三条直线可确定一个平面,也可确定三个平面,故D错误.故选:C12、D【解析】利用等差数列下标和的性质求值即可.【详解】由等差数列下标和性质知:.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分类讨论,两种情况,结合直线平行的知识得出实数.【详解】当时,直线与直线垂直;当时,,则且,解得.故答案为:14、【解析】设的坐标,用点差法求和与的关系同,与的关系,然后表示出,求得最大值【详解】设,,,则,两式相减得,∴,,则,同理,,又,∴,,当且仅当,即时等号成立,∴,故答案为:【点睛】方法点睛:本题考查直线与椭圆相交问题,考查椭圆弦中点问题.椭圆中涉及到弦的中点时,常常用点差法确定关系,即设弦端点为,弦中点为,把两点坐标代入椭圆方程,相减后可得15、2【解析】结合方差、平均数的公式列方程,化简求得正确答案.【详解】依题意设,则,.故答案为:16、相交【解析】由题意知,两圆的圆心分别为(-2,0),(2,1),故两圆的圆心距离为,两圆的半径之差为1,半径之和为5,而1<<5,所以两圆的位置关系为相交三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)首项为-2,公差为1;(2).【解析】(1)设出等差数列的公差,再结合前n项和公式列式计算作答.(2)由(1)的结论,探求数列的性质即可推理计算作答.【小问1详解】设等差数列首项为,公差为,而为其前n项和,,,于是得:,解得,,所以,.【小问2详解】由(1)知,,,,数列是递增数列,前3项均为非正数,从第4项起为正数,而,于是得的前2项和与前3项和相等并且最小,所以当或时,.18、(1)答案见解析(2)答案见解析【解析】(1)由展开图及直观图直接观察可得;(2)选择②,根据线面垂直的判定定理即可证明DF⊥平面.【小问1详解】如图,【小问2详解】若选择①,若此时有平面,则由平面可得,而平面,而平面,故,因为,则平面,由平面可得,故此时矩形为正方形,,矛盾.选择条件②,使得平面,下面证明如图,连接,在长方体中,平面,而平面,故,而,故矩形为正方形,故,而,故平面,而平面,故,同理,又,所以平面.19、(1)(2)存在,M与S重合【解析】(1)分别取AB,BC中点M,N,易证两两互相垂直,以为正交基底,建立空间直角坐标系,先求得平面SCD的一个法向量,再由求解;(2)假设存在点M,使得平面MEF平面SCD,再求得平面MEF的一个法向量,然后由求解.小问1详解】解:分别取AB,BC中点M,N,则,又平面则两两互相垂直,以为正交基底,建立如图所示的空间直角坐标系,,所以,设平面SCD的一个法向量为,,,则,,直线EF与平面SBC所成角的正弦值为.【小问2详解】假设存在点M,使得平面MEF平面SCD,,,设平面MEF的一个法向量,,令,则,平面MEF平面SCD,,,存在点,此时M与S重合.20、(1);(2)或.【解析】(1)由虚轴长是12求出半虚轴b,根据双曲线的性质c2=a2+b2以及离心率,求出a2,写出双曲线的标准方程;(2)设出抛物线方程,利用经过,求出抛物线中的参数,即可得到抛物线方程【详解】焦点在x轴上,设所求双曲线的方程为=1(a>0,b>0)由题意,得解得b=6,解得,所以焦点在x轴上的双曲线的方程为(2)由于点P在第三象限,所以抛物线方程可设为:或(p>0)当方程为,将点代入得16=4p,即p=4,抛物线方程为:;当方程为,将点代入得4=8p,即p=,抛物线方程为:;21、(1);(2);(3).【解析】(1)利用的关系,根据等比数列的定义求通项公式.(2)由(1)可得,应用裂项相消法求.(3)应用错位相减法求得,由题设有,讨论为奇数、偶数求的取值范围【小问1详解】当时,,可得,当时,,可得,∴是首项、公比都为的等比数列,故.【小问2详解】由(1),,∴.【小问3详解】由题设,,∴,则,∴,由对一切恒成立,令,则,∴数列单调

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论