2026届广西柳州市高级中学高二上数学期末检测模拟试题含解析_第1页
2026届广西柳州市高级中学高二上数学期末检测模拟试题含解析_第2页
2026届广西柳州市高级中学高二上数学期末检测模拟试题含解析_第3页
2026届广西柳州市高级中学高二上数学期末检测模拟试题含解析_第4页
2026届广西柳州市高级中学高二上数学期末检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届广西柳州市高级中学高二上数学期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线,则双曲线的渐近线方程为()A. B.C. D.2.下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则3.“杨辉三角”是中国古代数学文化的瑰宝之一,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现.如图所示的杨辉三角中,第8行,第3个数是()第0行1第1行11第2行121第3行1331第4行14641……A.21 B.28C.36 D.564.已知且,则下列不等式恒成立的是A. B.C. D.5.在等差数列中,若的值是A.15 B.16C.17 D.186.“”是“方程为双曲线方程”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.函数在的图象大致为()A. B.C D.8.设双曲线的实轴长为8,一条渐近线为,则双曲线的方程为()A. B.C. D.9.是椭圆的焦点,点在椭圆上,点到的距离为1,则到的距离为()A.3 B.4C.5 D.610.在等比数列中,若,则公比()A. B.C.2 D.311.已知、分别为双曲线的左、右焦点,且,点P为双曲线右支一点,为的内心,若成立,给出下列结论:①点的横坐标为定值a;②离心率;③;④当轴时,上述结论正确的是()A.①② B.②③C.①②③ D.②③④12.已知椭圆的上下顶点分别为,一束光线从椭圆左焦点射出,经过反射后与椭圆交于点,则直线的斜率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中项的系数为______.(结果用数值表示)14.若,则__________15.已知双曲线,则圆的圆心C到双曲线渐近线的距离为______16.一个质地均匀的正四面体,其四个面涂有不同的颜色,抛掷这个正四面体一次,观察它与地面接触的颜色得到样本空间{红,黄,蓝,绿},设事件{红,黄},事件{红,蓝},事件{黄,绿},则下列判断:①E与F是互斥事件;②E与F是独立事件;③F与G是对立事件;④F与G是独立事件.其中正确判断的序号是______(请写出所有正确判断的序号)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)命题p:关于x的不等式对一切恒成立;命题q:函数在上递增,若为真,而为假,求实数的取值范围18.(12分)△的内角A,B,C的对边分别为a,b,c.已知(1)求角B的大小;(2)若△不为钝角三角形,且,,求△的面积19.(12分)已知椭圆的左、右焦点分别为,,椭圆上一点满足,且的面积为(1)求椭圆的方程;(2)直线与椭圆有且只有一个公共点,过点作直线的垂线.设直线交轴于,交轴于,且点,求的轨迹方程20.(12分)已知函数的图像为曲线,点、.(1)设点为曲线上在第一象限内的任意一点,求线段的长(用表示);(2)设点为曲线上任意一点,求证:为常数;(3)由(2)可知,曲线为双曲线,请研究双曲线的性质(从对称性、顶点、渐近线、离心率四个角度进行研究).21.(12分)已知等比数列的公比,,.(1)求数列的通项公式;(2)令,若,求满足条件的最大整数n.22.(10分)如图,四边形是一块边长为4km正方形地域,地域内有一条河流,其经过的路线是以中点为顶点且开口向右的抛物线的一部分(河流宽度忽略不计),某公司准备投资一个大型矩形游乐场.(1)设,矩形游乐园的面积为,求与之间的函数关系;(2)试求游乐园面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求出、的值,可得出双曲线的渐近线方程.【详解】在双曲线中,,,因此,该双曲线的渐近线方程为.故选:A.2、C【解析】先举例说明ABD不成立,再根据不等式性质说明C成立.【详解】当时,满足,但不成立,所以A错;当时,满足,但不成立,所以B错;当时,满足,但不成立,所以D错;因为所以,又,因此同向不等式相加得,即C对;故选:C【点睛】本题考查不等式性质,考查基本分析判断能力,属基础题.3、B【解析】由题意知第8行的数就是二项式的展开式中各项的二项式系数,可得第8行,第3个数是为,即可求解【详解】解:由题意知第8行的数就是二项式的展开式中各项的二项式系数,故第8行,第3个数是为故选:B4、C【解析】∵且,∴∴选C5、C【解析】由已知直接利用等差数列的性质求解【详解】在等差数列{an}中,由a1+a2+a3=3,得3a2=3,即a2=1,又a5=9,∴a8=2a5-a2=18-1=17故选C【点睛】本题考查等差数列的通项公式,考查等差数列的性质,是基础题6、C【解析】先求出方程表示双曲线时满足的条件,然后根据“小推大”的原则进行判断即可.【详解】因方程为双曲线方程,所以,所以“”是“方程为双曲线方程”的充要条件.故选:C.7、D【解析】函数|在[–2,2]上是偶函数,其图象关于轴对称,因为,所以排除选项;当时,有一零点,设为,当时,为减函数,当时,为增函数故选:D.8、D【解析】双曲线的实轴长为,渐近线方程为,代入解析式即可得到结果.【详解】双曲线的实轴长为8,即,,渐近线方程为,进而得到双曲线方程为.故选:D.9、C【解析】利用椭圆的定义直接求解【详解】由题意得,得,因为,,所以,故选:C10、C【解析】由题得,化简即得解.【详解】因为,所以,所以,解得.故选:C11、C【解析】利用双曲线的定义、几何性质以及题意对选项逐个分析判断即可【详解】对于①,设内切圆与的切点分别为,则由切线长定理可得,因为,,所以,所以点的坐标为,所以点的横坐标为定值a,所以①正确,对于②,因为,所以,化简得,即,解得,因为,所以,所以②正确,对于③,设的内切圆半径为,由双曲线的定义可得,,因为,,所以,所以,所以③正确,对于④,当轴时,可得,此时,所以,所以④错误,故选:C12、B【解析】根据给定条件借助椭圆的光学性质求出直线AD的方程,进而求出点D的坐标计算作答.【详解】依题意,椭圆的上顶点,下顶点,左焦点,右焦点,由椭圆的光学性质知,反射光线AD必过右焦点,于是得直线AD的方程为:,由得点,则有,所以直线的斜率为.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求解出该二项式展开式的通项,然后求解出满足题意的项数值,带入通项即可求解出展开式的系数.【详解】展开式通项为,由题意,令,解得,,所以项的系数为.故答案为:.14、【解析】分别令和,再将两个等式相加可求得的值.【详解】令,则;令,则.上述两式相加得故答案为:.【点睛】本题考查偶数项系数和的计算,一般令和,通过对等式相加减求得,考查计算能力,属于中等题.15、2【解析】求出圆心和双曲线的渐近线方程,即得解.【详解】解:由题得圆的圆心为,双曲线的渐近线方程为,即.所以圆心到双曲线渐近线的距离为.故答案为:216、②③【解析】由对立和互斥事件的定义判断①③;由独立事件的性质判断②④.【详解】{红},则E与F不是互斥事件;且,则F与G是对立事件;,则E与F是独立事件;,,则F与G不是独立事件故答案为:②③三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】依题意,可分别求得p真、q真时m的取值范围,再由p∨q为真,而p∧q为假求得实数a的取值范围即可【详解】命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立;①若命题p正确,则△=(2a)2﹣42<0,即﹣2<a<2;②命题q:函数f(x)=logax在(0,+∞)上递增⇒a>1,∵p∨q为真,而p∧q为假,∴p、q一真一假,当p真q假时,有,∴﹣2<a≤1;当p假q真时,有,∴a≥2∴综上所述,﹣2<a≤1或a≥2即实数a的取值范围为(﹣2,1]∪[2,+∞)【点睛】本题考查复合命题的真假,分别求得p真、q真时m的取值范围是关键,考查理解与运算能力,属于中档题18、(1)或;(2).【解析】(1)根据正弦定理边角关系可得,再由三角形内角的性质求其大小即可.(2)由(1)及题设有,应用余弦定理求得、,最后利用三角形面积公式求△的面积【小问1详解】由正弦定理得:,又,所以,又B为△的一个内角,则,所以或;【小问2详解】由△不为钝角三角形,即,又,,由余弦定理,,得(舍去负值),则∴19、(1);(2).【解析】(1)利用可得,由椭圆关系可求得,进而得到椭圆方程;(2)将与椭圆方程联立可得,得,结合韦达定理可确定点坐标,由此可得方程,进而得到,化简整理即可得到所求轨迹方程.【小问1详解】由焦点坐标可知:;,即,,,解得:,,解得:(舍)或,,椭圆的方程为:;【小问2详解】由得:,,整理可得:;,解得:,,则,令,解得:;令,解得:;,即,又,,则的轨迹方程为:.【点睛】思路点睛:本题考查动点轨迹方程的求解问题,解题基本思路是能够利用变量表示出所求点的坐标,根据坐标之间关系,化简整理消掉变量得到所求轨迹方程;易错点是忽略题目中的限制条件,轨迹中出现多余的点.20、(1);(2)具体见解析;(3)具体见解析.【解析】(1)由两点间的距离公式求出距离,进而将式子化简即可;(2)求出,进而讨论两种情况,然后结合基本不等式即可证明问题;(3)根据为双曲线的焦点,结合双曲线的图形特征即可求得该双曲线的相关性质.【小问1详解】由题意,.【小问2详解】设,由(1),.若x>0,则,当且仅当时取“=”,则,,所以.若x<0,则,当且仅当时取“=”,则,,所以.综上:,为常数.【小问3详解】易知函数:为奇函数,则其图象关于原点对称.由(2)可知,曲线为双曲线,为双曲线的焦点,则它关于直线对称,还关于与垂直且过原点的直线对称.,则,易得.综上:双曲线关于原点(0,0)对称,且关于直线对称.容易知道,直线是双曲线C的渐近线.易知线段是双曲线的实轴,将代入双曲线解得顶点:.于是实轴长为焦距为,则离心率.21、(1)(2)【解析】(1)由等比数列的性质可得,结合条件求出,得出公比,从而得出通项公式.(2)由(1)可得,再求出的前项和,从而可得出答案.【小问1详解】由题意可知,有,,得或∴或又,∴∴【小问2详解】,∴∴,又单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论