海南省海口市名校2026届高一上数学期末经典试题含解析_第1页
海南省海口市名校2026届高一上数学期末经典试题含解析_第2页
海南省海口市名校2026届高一上数学期末经典试题含解析_第3页
海南省海口市名校2026届高一上数学期末经典试题含解析_第4页
海南省海口市名校2026届高一上数学期末经典试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

海南省海口市名校2026届高一上数学期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,在区间上是减函数的是()A. B.C. D.2.已知函数,则该函数的零点位于区间()A. B.C. D.3.已知H是球的直径AB上一点,AH:HB=1:2,AB⊥平面,H为垂足,截球所得截面的面积为,则球的表面积为A. B.C. D.4.下列函数中,既是偶函数又在区间0,+∞A.y=-x2C.y=x35.已知角终边上一点,则A. B.C. D.6.已知全集,集合,,则()A.{2,3,4} B.{1,2,4,5}C.{2,5} D.{2}7.若“”是假命题,则实数m的最小值为()A.1 B.-C. D.8.将函数图象上的点向右平移个单位长度后得到点,若点仍在函数的图象上,则的最小值为()A. B.C. D.9.已知,则的值等于()A. B.C. D.10.如图所示的时钟显示的时刻为3:30,此时时针与分针的夹角为.若一个扇形的圆心角为a,弧长为10,则该扇形的面积为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,,则_____________12.设集合,,若,则实数的取值范围是________13.已知角的终边过点,求_________________.14.在半径为5的圆中,的圆心角所对的扇形的面积为_______.15.已知是定义在上的奇函数,当时,,则的值为________________16.如图,在四面体A-BCD中,已知棱AC的长为,其余各棱长都为1,则二面角A-CD-B的平面角的余弦值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点P是圆C:(x-3)2+y2=4上的动点,点A(-3,0),M是线段AP的中点(1)求点M的轨迹方程;(2)若点M的轨迹与直线l:2x-y+n=0交于E,F两点,若直角坐标系的原点在以线段为直径的圆上,求n的值18.(1)已知,求的值;(2)已知,求的值;19.已知集合A={x|x2-px+q=0},B={x|x2-x-6=0}(Ⅰ)若A∪B={-2,1,3},A∩B={3},用列举法表示集合A;(Ⅱ)若∅AB,且p+q>0,求p,q的值20.已知函数为定义在R上的奇函数(1)求实数m,n的值;(2)解关于x的不等式21.已知函数(1)若,求实数a值;(2)若函数f(x)有两个零点,求实数a的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据二次函数,幂函数,指数函数,一次函数的单调性即可得出答案.【详解】解:对于A,函数在区间上是增函数,故A不符合题意;对于B,函数在区间上是增函数,故B不符合题意;对于C,函数在区间上是增函数,故C不符合题意;对于D,函数在区间上是减函数,故D符合题意.故选:D.2、B【解析】分别将选项中区间的端点代入,利用零点存在性定理判断即可【详解】由题,,,,所以,故选:B【点睛】本题考查利用零点存在性定理判断零点所在区间,属于基础题3、D【解析】设球的半径为,根据题意知由与球心距离为的平面截球所得的截面圆的面积是,我们易求出截面圆的半径为1,根据球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,我们易求出该球的半径,进而求出球的表面积【详解】设球的半径为,∵,∴平面与球心的距离为,∵截球所得截面的面积为,∴时,,故由得,∴,∴球的表面积,故选D【点睛】本题主要考查的知识点是球的表面积公式,若球的截面圆半径为,球心距为,球半径为,则球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,属于中档题.4、A【解析】根据基本函数的性质和偶函数的定义分析判断即可【详解】对于A,因为f(x)=-(-x)2=-x2=f(x),所以y=-x2是偶函数,对于B,y=2x是非奇非偶函数,所以对于C,因为f(-x)=(-x)3=-x3对于D,y=lnx=lnx,x>0故选:A5、C【解析】由题意利用任意角的三角函数的定义,求得的值【详解】∵角终边上一点,∴,,,则,故选C【点睛】本题主要考查任意角的三角函数的定义,属于基础题6、B【解析】分析】根据补集的定义求出,再利用并集的定义求解即可.【详解】因为全集,,所以,又因为集合,所以,故选:B.7、C【解析】根据题意可得“”是真命题,故只要即可,求出的最大值,即可求出的范围,从而可得出答案.【详解】解:因为“”是假命题,所以其否定“”是真命题,故只要即可,因为的最大值为,所以,解得,所以实数m的最小值为.故选:C.8、B【解析】作出函数和直线图象,根据图象,利用数形结合方法可以得到的最小值.【详解】画出函数和直线的图象如图所示,是它们的三个相邻的交点.由图可知,当在点,在点时,的值最小,易知的横坐标分别为,所以的最小值为,故选:B.9、B【解析】由分段函数的定义计算【详解】,,所以故选:B10、D【解析】先求出,再由弧长公式求出扇形半径,代入扇形面积公式计算即可.【详解】由图可知,,则该扇形的半径,故面积.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先由正弦定理得到,再由余弦定理求得的值【详解】由,结合正弦定理可得,故设,,(),由余弦定理可得,故.【点睛】本题考查了正弦定理和余弦定理的运用,属于基础题12、【解析】对于方程,由于,解得集合,由,根据区间端点值的关系列式求得的范围【详解】解:对于,由于,,,;∴∵,集合,∴解得,,则实数的取值范围是故答案为:13、【解析】先求出,再利用三角函数定义,即可得出结果.【详解】依题意可得:,故答案为:【点睛】本题考查了利用终边上点来求三角函数值,考查了理解辨析能力和运算能力,属于基础题目.14、【解析】先根据弧度的定义求得扇形的弧长,即可由扇形面积公式求得扇形的面积.【详解】设扇形的弧长为根据弧度定义可知则由扇形面积公式代入可得故答案为:【点睛】本题考查了弧度的定义,扇形面积的求法,属于基础题.15、-7【解析】由已知是定义在上的奇函数,当时,,所以,则=点睛:利用函数奇偶性求有关参数问题时,要灵活选用奇偶性的常用结论进行处理,可起到事半功倍的效果:①若奇函数在处有定义,则;②奇函数+奇函数=奇函数,偶函数+偶函数=偶函数,奇函数奇函数=偶函数偶函数=偶函数;③特殊值验证法16、【解析】如图,取中点,中点,连接,由题可知,边长均为1,则,中,,则,得,所以二面角的平面角即,在中,,则,所以.点睛:本题采用几何法去找二面角,再进行求解.利用二面角的定义:公共边上任取一点,在两个面内分别作公共边的垂线,两垂线的夹角就是二面角的平面角,找到二面角的平面角,再求出对应三角形的三边,利用余弦定理求解(本题中刚好为直角三角形).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)设,,,利用为中点,表示出,代入圆方程即可;(2)根据轨迹以及结合韦达定理、平面向量的数量积,列出关于的方程即可【详解】(1)设为所求轨迹上的任意一点,点P为,则.①又是线段AP的中点,,则,代入①式得(2)联立,消去y得由得.②设,,则.③由可得,,,展开得由③式可得,化简得.④根据②④得18、(1);(2)3.【解析】(1)根据指数的运算性质可得,再由与的关系求值即可.(2)由对数的运算性质可得,再由正余弦的齐次计算求目标式的值.【详解】(1)由,可得:,∴,解得.(2)由,可得:,即,∴.19、(Ⅰ){3,1}(Ⅱ)p=6,q=9【解析】(Ⅰ)可求出B={-2,3},根据A∪B={-2,1,3},A∩B={3},即可求出集合A;(Ⅱ)根据条件∅AB即可得出A={-2},或{3},再根据p+q>0即可求出p,q的值【详解】(Ⅰ)B={-2,3};∵A∪B={-2,1,3},A∩B={3};∴A={3,1};(Ⅱ)∵∅AB;∴A={-2},或A={3};①若A={-2},则;∴p+q=0,不满足p+q>0;∴A≠{-2};②若A={3},则;满足p+q>0;∴p=6,q=9【点睛】考查描述法的定义,交集、并集的概念及运算,以及真子集的定义,韦达定理20、(1)(2)答案详见解析【解析】(1)利用以及求得的值.(2)利用函数的奇偶性、单调性化简不等式,对进行分类讨论,由此求得不等式的解集.【小问1详解】由于是定义在R上的奇函数,所以,所以,由于是奇函数,所以,所以,即,所以.【小问2详解】由(1)得,任取,,由于,所以,,所以在上递增.不等式,即,,,,,,①.当时,①即,不等式①的解集为空集.当时,不等式①的解集为.当时,不等式①的解集为.21、(1)(2)【解析】(1)根据即可求出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论