版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届海东市重点中学高二数学第一学期期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列1,6,15,28,45,…中的每一项都可用如图所示的六边形表示出米,故称它们为六边形数,那么第11个六边形数为()A.153 B.190C.231 D.2762.已知{}为等比数列.,则=()A.—4 B.4C.—4或4 D.163.设、分别为具有公共焦点与的椭圆和双曲线的离心率,为两曲线的一个公共点,且满足,则的值为()A. B.C. D.4.已知圆与直线,则圆上到直线的距离为1的点的个数是()A.1 B.2C.3 D.45.与的等差中项是()A. B.C. D.6.已知f(x)是定义在R上的偶函数,当时,,且f(-1)=0,则不等式的解集是()A. B.C. D.7.在中,内角的对边分别为,若,则角为A. B.C. D.8.数列,,,,…的一个通项公式为()A. B.C. D.9.已知点为直线上任意一点,为坐标原点.则以为直径的圆除过定点外还过定点()A. B.C. D.10.已知直线与平行,则系数()A. B.C. D.11.椭圆()的右顶点是抛物线的焦点,且短轴长为2,则该椭圆方程为()A. B.C. D.12.已知点,,,动点P满足,则的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某校共有学生480人;现采用分层抽样的方法从中抽取80人进行体能测试;若这80人中有30人是男生,则该校女生共有___________.14.已知抛物线的焦点坐标为,则该抛物线上一点到焦点的距离的取值范围是___________.15.已知的顶点A(1,5),边AB上的中线CM所在的直线方程为,边AC上的高BH所在直线方程为,求(1)顶点C的坐标;(2)直线BC的方程;16.已知圆柱轴截面是边长为4的正方形,则圆柱的侧面积为______________
.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图在直三棱柱中,为的中点,为的中点,是中点,是与的交点,是与的交点.(1)求证:;(2)求证:平面;(3)求直线与平面的距离.18.(12分)在等差数列中,,.(1)求数列通项公式;(2)若,求数列的前项和.19.(12分)已知椭圆的离心率为,椭圆过点.(1)求椭圆C的方程;(2)过点的直线交椭圆于M、N两点,已知直线MA,NA分别交直线于点P,Q,求的值.20.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,,,△ABC的面积为(1)求a;(2)若D为BC边上一点,且∠BAD=,求∠ADC的正弦值21.(12分)已知向量,.(1)计算和;(2)求.22.(10分)已知,:,:.(1)若,为真命题,为假命题,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】细心观察,寻求相邻项及项与序号之间的关系,同时联系相关知识,如等差数列、等比数列等,结合图形即可求解.【详解】由题意知,数列的各项为1,6,15,28,45,...所以,,,,,,所以.故选:C2、B【解析】根据题意先求出公比,进而用等比数列通项公式求得答案.【详解】由题意,设公比为q,则,则.故选:B.3、A【解析】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设,利用椭圆和双曲线的定义可得出,再利用勾股定理可求得结果.【详解】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设,由椭圆和双曲线的定义可得,所以,,设,因为,则,由勾股定理得,即,整理得,故.故选:A.4、B【解析】根据圆心到直线的距离即可判断.【详解】由得,则圆的圆心为,半径,由,则圆心到直线的距离,∵,∴在圆上到直线距离为1的点有两个.故选:B.5、A【解析】代入等差中项公式即可解决.【详解】与的等差中项是故选:A6、D【解析】根据题意可知,当时,,即函数在上单调递增,再结合函数f(x)的奇偶性得到函数的奇偶性,并根据奇偶性得到单调性,进而解得答案.【详解】由题意,当时,,则函数在上单调递增,而f(x)是定义在R上的偶函数,容易判断是定义在上的奇函数,于是在上单调递增,而f(-1)=0,则.于是当时,.故选:D.7、A【解析】因为,那么结合,所以cosA==,所以A=,故答案为A考点:正弦定理与余弦定理点评:本题主要考查正弦定理与余弦定理的基本应用,属于中等题.8、B【解析】根据给定数列,结合选项提供通项公式,将n代入验证法判断是否为通项公式.【详解】A:时,排除;B:数列,,,,…满足.C:时,排除;D:时,排除;故选:B9、D【解析】设垂直于直线,可知圆恒过垂足;两条直线方程联立可求得点坐标.【详解】设垂直于直线,垂足为,则直线方程为:,由圆的性质可知:以为直径的圆恒过点,由得:,以为直径的圆恒过定点.故选:D.10、B【解析】由直线的平行关系可得,解之可得【详解】解:直线与直线平行,,解得故选:11、A【解析】求得抛物线的焦点从而求得,再结合题意求得,即可写出椭圆方程.【详解】因为抛物线的焦点坐标为,故可得;又短轴长为2,故可得,即;故椭圆方程为:.故选:.12、C【解析】由题设分析知的轨迹为(不与重合),要求的取值范围,只需求出到圆上点的距离范围即可.【详解】由题设,在以为直径的圆上,令,则(不与重合),所以的取值范围,即为到圆上点的距离范围,又圆心到的距离,圆的半径为2,所以的取值范围为,即.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、人##300【解析】根据人数占比直接计算即可.【详解】该校女生共有人.故答案为:人.14、【解析】根据题意,求得,得到焦点坐标,结合抛物线的定义,得到,根据,求得,即可求解.【详解】由抛物线的焦点坐标为,可得,解得,设抛物线上的任意一点为,焦点为,由抛物线的定义可得,因为,所以,所以抛物线上一点到焦点的距离的取值范围是.故答案为:.15、(1);(2).【解析】(1)设出点C的坐标,进而根据点C在中线上及求得答案;(2)设出点B的坐标,进而求出点M的坐标,然后根据中线的方程及求出点B的坐标,进而求出直线BC的方程.【小问1详解】设C点的坐标为,则由题知,即.【小问2详解】设B点的坐标为,则中点M坐标代入中线CM方程则由题知,即,又,则,所以直线BC方程为.16、【解析】由圆柱轴截面的性质知:圆柱体的高为,底面半径为,根据圆柱体的侧面积公式,即可求其侧面积.【详解】由圆柱的轴截面是边长为4的正方形,∴圆柱体的高为,底面半径为,∴圆柱的侧面积为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析(3)【解析】(1)法一:通过建立空间直角坐标系,运用向量数量积证明,法二:通过线面垂直证明,法三:根据三垂线证明;(2)法一:通过建立空间直角坐标系,运用向量数量积证明,法二:通过面面平行证明线面平行;(3)法一:通过建立空间直角坐标系,运用向量方法求解,法二:运用等体积法求解.【小问1详解】证明:法一:在直三棱柱中,因为,以点为坐标原点,方向分别为轴正方向建立如图所示空间直角坐标系.因为,所以,所以所以,所以.法二:连接,在直三棱柱中,有面,面,所以,又,则,因为,所以面因为面,所以因为,所以四边形为正方形,所以因为,所以面因为面,所以.法三:用三垂线定理证明:连接,在直三棱柱中,有面因为面,所以,又,则,因为,所以面所以在平面内的射影为,因为四边形为正方形,所以,因此根据三垂线定理可知【小问2详解】证明:法一:因为为的中点,为的中点,为中点,是与的交点,所以、,依题意可知为重心,则,可得所以,,设为平面的法向量,则即取得则平面的一个法向量为.所以,则,因为平面,所以平面.法二:连接.在正方形中,为的中点,所以且,所以四边形是平行四边形,所以又为中点,所以四边形是矩形,所以且因为且,所以,所以四边形为平行四边形,所以.因为,平面平面平面平面,所以平面平面,平面,所以平面【小问3详解】法一:由(2)知平面的一个法向量,且平面,所以到平面的距离与到平面的距离相等,,所以,所以点到平面的距离所以到平面的距离为法二:因为分别为和中点,所以为的重心,所以,所以到平面的距离是到平面距离的.取中点则,又平面平面,所以平面,所以到平面的距离与到平面的距离相等.设点到平面的距离为,由得,又,所以,所以到平面的距离是,所以到平面的距离为.18、(1);(2).【解析】(1)利用等差数列的基本量,根据题意,列出方程,即可求得公差以及通项公式;(2)根据(1)中所求,结合等差数列的前项和的公式,求得,以及,再利用等比数列的前项和公式求得.【小问1详解】因为,所以,故可得,所以.【小问2详解】因为,所以.于是,令,则.显然数列是等比数列,且,公比,所以数列的前n项和.19、(1)(2)1【解析】(1)由题意得到关于a,b的方程组,求解方程组即可确定椭圆方程;(2)首先联立直线与椭圆的方程,然后由直线MA,NA的方程确定点P,Q的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得,从而可得两线段长度的比值.【小问1详解】由题意,点椭圆上,有,解得故椭圆C的方程为.【小问2详解】当直线l的斜率不存在时,显然不符;当直线l的斜率存在时,设直线l为:联立方程得:由,设,有又由直线AM:,令x=-4得,将代入得:,同理得:.很明显,且,注意到,,而,故所以.【点睛】本题考查求椭圆的方程,解题关键是利用离心率与椭圆上的点,找到关于a,b,c的等量关系求解a与b.本题中直线方程代入椭圆方程整理后应用韦达定理求出,.表示出,,然后转化为相应的比值关系.考查了学生的运算求解能力,逻辑推理能力.属于中档题20、(1)(2)【解析】(1)利用面积公式及余弦定理可求解;(2)由正弦定理得到,再运用同角函数的关系得到,最后运用正弦的两角和公式求解即可.【小问1详解】∵,,,∴由余弦定理:,∴【小问2详解】在中,由正弦定理得,∴,易知B为锐角,∴,∴21、(1),;(2).【解析】(1)利用空间向量的坐标运算可求得的坐标,利用向量的模长公式可求得的值;(2)计算出,结合的取值范围可求得结果.【详解】(1),;(2),,因此,.【点睛】本题考查空间向量的坐标运算,同时也考查了利用空间向量的数量积计算向
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025福建泉州丰泽城市建设集团有限公司“人才强企”引才8人笔试参考题库附带答案详解(3卷)
- 2025玉溪红塔实业有限责任公司员工招聘(29人)笔试参考题库附带答案详解(3卷)
- 2025湖北襄阳高新城乡基础设施建设维护有限公司招聘2人笔试参考题库附带答案详解(3卷)
- 2025浙江温州市鹿城区文旅传媒集团有限公司面招聘1名工作人员笔试历年参考题库附带答案详解
- 2025河南水投玉源建设运营有限公司人才招聘6人笔试历年参考题库附带答案详解
- 2025江西洪城水业环保有限公司招聘工勤岗工作人员28人笔试参考题库附带答案详解(3卷)
- 2025江苏南通市海鸿投资控股集团有限公司下属子公司拟聘用人员笔试历年参考题库附带答案详解
- 2025广东深圳证券交易所及其下属单位信息技术专业人员招聘笔试历年参考题库附带答案详解
- 2025年吉安市吉州区园投人力资源服务有限公司面向社会公开招聘劳务外包工作人员(九)初审及安排笔试参考题库附带答案详解(3卷)
- 2025山西吕梁市孝义市属国有企业招聘考试(第一批)人员笔试历年参考题库附带答案详解
- 重庆律师收费管理办法
- 安庆四中学2024年七上数学期末考试试题含解析
- 带状疱疹中医病例讨论
- 经济法学-002-国开机考复习资料
- T/CCMA 0147-2023异型吊篮安装、使用和拆卸安全技术规程
- 【高中数学竞赛真题•强基计划真题考前适应性训练】 专题03三角函数 真题专项训练(全国竞赛+强基计划专用)原卷版
- SL631水利水电工程单元工程施工质量验收标准第1部分:土石方工程
- 危重新生儿救治中心危重新生儿管理制度
- (二调)武汉市2025届高中毕业生二月调研考试 英语试卷(含标准答案)+听力音频
- 医院传染病疫情报告管理工作职责
- 汽车修理厂轮胎采购 投标方案(技术标 )
评论
0/150
提交评论