云南省玉溪市第一中学2026届高一数学第一学期期末调研试题含解析_第1页
云南省玉溪市第一中学2026届高一数学第一学期期末调研试题含解析_第2页
云南省玉溪市第一中学2026届高一数学第一学期期末调研试题含解析_第3页
云南省玉溪市第一中学2026届高一数学第一学期期末调研试题含解析_第4页
云南省玉溪市第一中学2026届高一数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省玉溪市第一中学2026届高一数学第一学期期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.点A,B,C,D在同一个球的球面上,,,若四面体ABCD体积的最大值为,则这个球的表面积为A. B.C. D.2.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是()A. B.C. D.3.形如的函数因其图像类似于汉字中的“囧”字,故我们把其生动地称为“囧函数”.若函数有最小值,则“囧函数”与函数的图像交点个数为()A.1 B.2C.4 D.64.函数的一个零点在区间内,则实数的取值范围是()A. B.C. D.5.已知集合,,若,则实数的值为()A. B.C. D.6.著名数学家、物理学家牛顿曾提出:物体在空气中冷却,如果物体的初始温度为,空气温度为,则分钟后物体的温度(单位:)满足:.若常数,空气温度为,某物体的温度从下降到,大约需要的时间为()(参考数据:)A.分钟 B.分钟C.分钟 D.分钟7.集合{0,1,2}的所有真子集的个数是A.5 B.6C.7 D.88.某市中心城区居民生活用水阶梯设置为三档,采用边际用水量确定分档水量为:第一档水量为240立方米/户年及以下部分;第二档水量为240立方米/户年以上至360立方米/户年部分(含360立方米/户年);第三档水量为360立方米/户年以上部分.家庭常住人口在4人(不含4人)以上的多人口户,凭户口簿,其水量按每增加一人各档水量递增50立方米/年确定.第一档用水价格为2.1元/立方米;第二档用水价格为3.2元/立方米;第三档用水价格为6.3元/立方米.小明家中共有6口人,去年整年用水花费了1602元,则小明家去年整年的用水量为().A.474立方米 B.482立方米C.520立方米 D.540立方米9.关于的方程的实数根的个数为()A.6 B.4C.3 D.210.下列结论中正确的是()A.当时,无最大值 B.当时,的最小值为3C.当且时, D.当时,二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小值为_______12.已知函数,若函数的最小值与函数的最小值相等,则实数的取值范围是__________13.已知函数是定义在上的奇函数,且当时,,则的值为__________14.用表示a,b中的较小者,则的最大值是____.15.=________16.若,则的最小值是___________,此时___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)若p为真命题,求实数x的取值范围(2)若p为q成立的充分不必要条件,求实数a的取值范围18.圆内有一点,为过点且倾斜角为的弦.(1)当时,求的长;(2)当弦被点平分时,写出直线的方程.19.已知函数f(x)=2sin2(x+)-2cos(x-)-5a+2(1)设t=sinx+cosx,将函数f(x)表示为关于t的函数g(t),求g(t)的解析式;(2)对任意x∈[0,],不等式f(x)≥6-2a恒成立,求a的取值范围20.某市有A、B两家羽毛球球俱乐部,两家设备和服务都很好,但收费方式不同,A俱乐部每块场地每小时收费6元;B俱乐部按月计费,一个月中20小时以内含20小时每块场地收费90元,超过20小时的部分,每块场地每小时2元,某企业准备下个月从这两家俱乐部中的一家租用一块场地开展活动,其活动时间不少于12小时,也不超过30小时设在A俱乐部租一块场地开展活动x小时的收费为元,在B俱乐部租一块场地开展活动x小时的收费为元,试求与的解析式;问该企业选择哪家俱乐部比较合算,为什么?21.设函数(1)求函数的最小正周期和单调递增区间;(2)求函数在上的最大值与最小值及相应的x的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据题意,画出示意图,结合三角形面积及四面积体积的最值,判断顶点D的位置;然后利用勾股定理及球中的线段关系即可求得球的半径,进而求得球的面积【详解】根据题意,画出示意图如下图所示因为,所以三角形ABC为直角三角形,面积为,其所在圆面的小圆圆心在斜边AC的中点处,设该小圆的圆心为Q因为三角形ABC的面积是定值,所以当四面体ABCD体积取得最大值时,高取得最大值即当DQ⊥平面ABC时体积最大所以所以设球心为O,球的半径为R,则即解方程得所以球的表面积为所以选D【点睛】本题考查了空间几何体的外接球面积的求法,主要根据题意,正确画出图形并判断点的位置,属于难题2、A【解析】由图象知函数的定义域排除选项选项B、D,再根据不成立排除选项C,即可得正确选项.【详解】由图知的定义域为,排除选项B、D,又因为当时,,不符合图象,所以排除C,故选:A【点睛】思路点睛:排除法是解决函数图象问题的主要方法,根据函数的定义域、与坐标轴的交点、函数值的符号、单调性、奇偶性等,从而得出正确结果.3、C【解析】令,根据函数有最小值,可得,由此可画出“囧函数”与函数在同一坐标系内的图象,由图象分析可得结果.【详解】令,则函数有最小值∵,∴当函数是增函数时,在上有最小值,∴当函数是减函数时,在上无最小值,∴.此时“囧函数”与函数在同一坐标系内的图象如图所示,由图象可知,它们的图象的交点个数为4.【点睛】本题考查对数函数的性质和函数图象的应用,考查学生画图能力和数形结合的思想运用,属中档题.4、C【解析】根据零点存在定理得出,代入可得选项.【详解】由题可知:函数单调递增,若一个零点在区间内,则需:,即,解得,故选:C.【点睛】本题考查零点存在定理,属于基础题.5、B【解析】根据集合,,可得,从而可得.【详解】因为,,所以,所以.故选:B6、D【解析】由已知条件得出,,,代入等式,求出即可得出结论.【详解】由题知,,,所以,,可得,所以,,.故选:D.7、C【解析】集合{0,1,2}中有三个元素,因此其真子集个数为.故选:C.8、D【解析】根据题意,建立水费与用水量的函数关系式,即可求解.【详解】设小明家去年整年用水量为x,水费为y.若时,则;若时,则;若时,则.令,解得:故选:D9、D【解析】转化为求或的实根个数之和,再构造函数可求解.【详解】因为,所以,所以,所以或,令,则或,因为为增函数,且的值域为,所以和都有且只有一个实根,且两个实根不相等,所以原方程的实根的个数为.故选:D10、D【解析】利用在单调递增,可判断A;利用均值不等式可判断B,D;取可判断C【详解】选项A,由都在单调递增,故在单调递增,因此在上当时取得最大值,选项A错误;选项B,当时,,故,当且仅当,即时等号成立,由于,故最小值3取不到,选项B错误;选项C,令,此时,不成立,故C错误;选项D,当时,,故,当且仅当,即时,等号成立,故成立,选项D正确故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据正弦型函数的性质求的最小值.【详解】由正弦型函数的性质知:,∴的最小值为.故答案为:.12、【解析】由二次函数的知识得,当时有.令,则,.结合二次函数可得要满足题意,只需,解不等式可得所求范围【详解】由已知可得,所以当时,取得最小值,且令,则,要使函数的最小值与函数的最小值相等,只需满足,解得或.所以实数的取值范围是故答案为【点睛】本题考查二次函数最值的问题,求解此类问题时要结合二次函数图象,即抛物线的开口方向和对称轴与区间的关系进行求解,同时注意数形结合在解题中的应用,考查分析问题和解决问题的能力,属于基础题13、-1【解析】因为为奇函数,故,故填.14、【解析】分别做出和的图象,数形结合即可求解.【详解】解:分别做出和的图象,如图所示:又,当时,解得:,故当时,.故答案为:.15、【解析】利用两角差的正切公式直接求值即可.【详解】=故答案为【点睛】本题主要考查两角差的正切公式,特殊角的三角函数值,属于基础题.16、①.1②.0【解析】利用基本不等式求解.【详解】因为,所以,当且仅当,即时,等号成立,所以其最小值是1,此时0,故答案为:1,0三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据命题为真可求不等式的解.(2)根据条件关系可得对应集合的包含关系,从而可求参数的取值范围.【小问1详解】因为p为真命题,故成立,故.【小问2详解】对应的集合为,对应的集合为,因为p为q成立的充分不必要条件,故为的真子集,故(等号不同时取),故.18、(1);(2).【解析】(1)求出直线AB的斜率即可写出其点斜式方程,利用勾股定理可求得弦长;(2)当弦被点平分时,AB与垂直,由此可求出直线AB的斜率,写出其点斜式方程化简即可.【详解】(1)依题意,直线AB的斜率为,又直线AB过点,所以直线AB的方程为:,圆心到直线AB的距离为,则,所以;(2)当弦被点平分时,AB与垂直,因为,所以,直线AB的点斜式方程为,即.【点睛】本题考查直线的点斜式方程、直线截圆所得弦长,属于基础题.19、(1),;(2)【解析】:(1)首先由两角和的正弦公式可得,进而即可求出的取值范围;接下来对已知的函数利用进行表示;对于(2),首先由的取值范围,求出的取值范围,再对已知进行恒等变形可得在区间上恒成立,据此即可得到关于的不等式,解不等式即可求出的取值范围.试题解析:(1),因为,所以,其中,即,.(2)由(1)知,当时,,又在区间上单调递增,所以,从而,要使不等式在区间上恒成立,只要,解得:.点晴:本题考查是求函数的解析式及不等式恒成立问题.(1)首先,可求出的取值范围;接下来对已知的函数利用进行表示;(2)先求二次函数,再解不等式.20、(1)(2)当时,选A家俱乐部合算,当时,两家俱乐部一样合算,当时,选B家俱乐部合算【解析】(1)根据题意求出函数的解析式即可;(2)通过讨论x的范围,判断f(x)和g(x)的大小,从而比较结果即可【详解】由题意,,;时,,解得:,即当时,,当时,,当时,;当时,,故当时,选A家俱乐部合算,当时,两家俱乐部一样合算,当时,选B家俱乐部合算

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论