2026届甘肃省定西市岷县第二中学数学高二上期末复习检测模拟试题含解析_第1页
2026届甘肃省定西市岷县第二中学数学高二上期末复习检测模拟试题含解析_第2页
2026届甘肃省定西市岷县第二中学数学高二上期末复习检测模拟试题含解析_第3页
2026届甘肃省定西市岷县第二中学数学高二上期末复习检测模拟试题含解析_第4页
2026届甘肃省定西市岷县第二中学数学高二上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届甘肃省定西市岷县第二中学数学高二上期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等差数列{an}中,a1=1,,则a7=()A.13 B.14C.15 D.162.过抛物线的焦点F的直线l与抛物线交于PQ两点,若以线段PQ为直径的圆与直线相切,则()A.8 B.7C.6 D.53.已知直线的斜率为1,直线的倾斜角比直线的倾斜角小15°,则直线的斜率为()A.-1 B.C. D.14.已知动圆M与直线y=2相切,且与定圆C:外切,求动圆圆心M的轨迹方程A. B.C. D.5.如图所示,直三棱柱中,,,分别是,的中点,,则与所成角的余弦值为()A. B.C. D.6.下列求导不正确的是()A B.C. D.7.一辆汽车做直线运动,位移与时间的关系为,若汽车在时的瞬时速度为12,则()A. B.C.2 D.38.如图,在直三棱柱中,,,D为AB的中点,点E在线段上,点F在线段上,则线段EF长的最小值为()A B.C.1 D.9.已知命题,;命题,,那么下列命题为假命题的是()A. B.C. D.10.为了更好地研究双曲线,某校高二年级的一位数学老师制作了一个如图所示的双曲线模型.已知该模型左、右两侧的两段曲线(曲线与曲线)为某双曲线(离心率为2)的一部分,曲线与曲线中间最窄处间的距离为,点与点,点与点均关于该双曲线的对称中心对称,且,则()A. B.C. D.11.已知直线l,m,平面α,β,,,则是的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件12.曲线的一个焦点F到两条渐近线的垂线段分别为FA,FB,O为坐标原点,若四边形OAFB是菱形,则双曲线C的离心率等于()A. B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,且,则的最小值为____________14.甲乙两艘轮船都要在某个泊位停靠8个小时,假定它们在一昼夜的时间段内随机地到达,则两船中有一艘在停靠泊位时、另一艘船必须等待的概率为______.15.数列的前项和为,则_________________.16.已知某农场某植物高度,且,如果这个农场有这种植物10000棵,试估计该农场这种植物高度在区间上的棵数为______.参考数据:若,则,,.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知四边形是空间直角坐标系中的一个平行四边形,且,,(1)求点的坐标;(2)求平行四边形的面积18.(12分)已知椭圆的长轴长是,以其短轴为直径的圆过椭圆的左右焦点,.(1)求椭圆E的方程;(2)过椭圆E左焦点作不与坐标轴垂直的直线,交椭圆于M,N两点,线段MN的垂直平分线与y轴负半轴交于点Q,若点Q的纵坐标的最大值是,求面积的取值范围.19.(12分)设数列是公比为q的等比数列,其前n项和为(1)若,,求数列的前n项和;(2)若,,成等差数列,求q的值并证明:存在互不相同的正整数m,n,p,使得,,成等差数列;(3)若存在正整数,使得数列,,…,在删去以后按原来的顺序所得到的数列是等差数列,求所有数对所构成的集合,20.(12分)已知等比数列的前项和为,且,.(1)求的通项公式;(2)求.21.(12分)已知直线l过定点(1)若直线l与直线垂直,求直线l的方程;(2)若直线l在两坐标轴上的截距相等,求直线l的方程22.(10分)在①,;②,;③,.这三个条件中任选一个,补充在下面问题中.问题:已知数列的前n项和为,,___________.(1)求数列的通项公式(2)已知,求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用等差数列的基本量,即可求解.【详解】设等差数列的公差为,,解得:,则.故选:A2、C【解析】依据抛物线定义可以证明:以过抛物线焦点F的弦PQ为直径的圆与其准线相切,则可以顺利求得线段的长.【详解】抛物线的焦点F,准线取PQ中点H,分别过P、Q、H作抛物线准线的垂线,垂足分别为N、M、E则四边形为直角梯形,为梯形中位线,由抛物线定义可知,,,则故,即点H到抛物线准线的距离为的一半,则以线段PQ为直径的圆与抛物线的准线相切.又以线段PQ为直径的圆与直线相切,则以线段PQ为直径的圆的直径等于直线与直线间的距离.即故选:C3、C【解析】根据直线的斜率求出其倾斜角可求得答案.【详解】设直线的倾斜角为,所以,因为,所以,因为直线的倾斜角比直线的倾斜角小15°,所以直线的倾斜角为,则直线的斜率为.故选:C4、D【解析】由题意动圆M与直线y=2相切,且与定圆C:外切∴动点M到C(0,-3)的距离与到直线y=3的距离相等由抛物线的定义知,点M的轨迹是以C(0,-3)为焦点,直线y=3为准线的抛物线故所求M的轨迹方程为考点:轨迹方程5、A【解析】取的中点为,的中点为,然后可得或其补角即为与所成角,然后在中求出答案即可.【详解】取的中点为,的中点为,,,所以或其补角即为与所成角,设,则,,在,,故选:A6、C【解析】由导数的运算法则、复合函数的求导法则计算后可判断【详解】A:;B:;C:;D:故选:C7、D【解析】首先求出函数的导函数,依题意可得,即可解得;【详解】解:因为,所以又汽车在时的瞬时速度为12,即即,解得故选:D【点睛】本题考查导数在物理中的应用,属于基础题.8、B【解析】根据给定条件建立空间直角坐标系,令,用表示出点E,F坐标,再由两点间距离公式计算作答.【详解】依题意,两两垂直,建立如图所示的空间直角坐标系,则,,设,则,设,有,线段EF长最短,必满足,则有,解得,即,因此,,当且仅当时取“=”,所以线段EF长的最小值为.故选:B9、B【解析】由题设命题的描述判断、的真假,再判断其复合命题的真假即可.【详解】对于命题,仅当时,故为假命题;对于命题,由且开口向上,故为真命题;所以为真命题,为假命题,综上,为真,为假,为真,为真.故选:B10、D【解析】依题意以双曲线的对称中心为坐标原点建系,设双曲线的方程为,根据已知求得,点纵坐标代入计算即可求得横坐标得出结果.【详解】以双曲线的对称中心为坐标原点,建立平面直角坐标系,因为双曲线的离心率为2,所以可设双曲线的方程为,依题意可得,则,即双曲线的方程为.因为,所以的纵坐标为18.由,得,故.故选:D.11、A【解析】由题意可知,已知,,则可以推出,反之不成立.【详解】已知,,则可以推出,已知,,则不可以推出.故是的充分不必要条件.故选:A.12、A【解析】依题意可得为正方形,即可得到,从而得到双曲线的渐近线为,即可求出双曲线的离心率;【详解】解:依题意,,且四边形为菱形,所以为正方形,所以,即双曲线的渐近线为,即,所以;故选:A二、填空题:本题共4小题,每小题5分,共20分。13、16【解析】根据,且,利用“1”的代换将,转化为,再利用基本不等式求解.【详解】因为,且,所以,当且仅当,,即时,取等号.所以的最小值为16.故答案为:16【点睛】本题主要考查基本不等式求最值,还考查了运算求解的能力,属于基础题.14、【解析】利用几何概型的面积型概率计算,作出边长为24的正方形面积,求出部分的面积,即可求得答案.【详解】设甲乙两艘轮船到达的时间分为,则,记事件为两船中有一艘在停靠泊位时、另一艘船必须等待,则,即∴.故答案为:.【点睛】本题考查几何概型,考查转化与化归思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意对概率模型的抽象成面积型.15、【解析】利用计算可得出数列的通项公式.【详解】当时,;而不适合上式,.故答案:.16、1359【解析】由已知求得,则,结合已知求得,乘以10000得答案【详解】解:由,得,又,,则,估计该农场这种植物高度在区间,上的棵数为故答案为:1359三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由题设可得,结合向量的共线坐标表示求的坐标;(2)向量的坐标运算求边长,由余弦定理求,进而求其正弦值,再应用三角形面积公式求面积.【小问1详解】由题设,,令,则,∴,可得,故.【小问2详解】由(1),,,则,又,则,∴平行四边形的面积.18、(1);(2).【解析】(1)根据给定条件结合列式计算即可作答.(2)设出直线MN的方程,与椭圆方程联立并结合已知求出m的范围,再借助韦达定理求出面积函数,利用函数单调性计算作答.【小问1详解】令椭圆半焦距为c,依题意,,解得,所以椭圆E的方程为.【小问2详解】由(1)知,椭圆E左焦点为,设过椭圆E左焦点的直线为(存在且不为0),由消去x得,,设,则,线段的中点为,因此线段的垂直平分线为,由得的纵坐标为,依题意,且,解得,由(1)知,,,令,在上单调递减,当,即时,,当,即时,,所以面积的取值范围.【点睛】结论点睛:过定点的直线l:y=kx+b交圆锥曲线于点,,则面积;过定点直线l:x=ty+a交圆锥曲线于点,,则面积19、(1)(2),证明见解析.(3)不存在,【解析】(1)数列为首项为公差为的等差数列,利用等差数列的求和公式即可得出结果;(2),,成等差数列,则+=2,根据等比数列求和公式计算可解得,进而计算可得,即可判断结果;(3)由题意列出,,…,,,,,,…,在删去以后,按原来的顺序所得到的数列是等差数列,则,解方程组可得无解,则所有数对所构成的集合为.【小问1详解】,,数列是公比为q的等比数列,,数列为,数列为首项为公差为的等差数列,数列的前n项和.【小问2详解】,,成等差数列,+=2,当时,+=,2,不符题意舍去,当时,.,即,,,(舍)或即,存在互不相同的正整数,使得,,成等差数列,,,.【小问3详解】由题意列出,,…,,,,,,…,在删去以后,按原来的顺序所得到的数列是等差数列,则,,即,解得:方程组无解.即符合条件的不存在,所有数对所构成的集合为.20、(1)(2)【解析】(1)设的公比为,根据题意求得的值,即可求得的通项公式;(2)由(1)求得,得到,利用等比数列的求和公式,即可求解.【小问1详解】解:设的公比为,因为,,则,又因为,解得,所以的通项公式为.【小问2详解】解:由,可得,则,所以.21、(1)(2)或【解析】(1)求出直线的斜率可得l的斜率,再借助直线点斜式方程即可得解.(2)按直线l是否过原点分类讨论计算作答.【小问1详解】直线的斜率为,于是得直线l的斜率,则,即,所以直线l的方程是:.【小问2详解】因直线l在两坐标轴上的截距相等,则当直线l过原点时,直线l的方程为:,即,当直线l不过原点时,设其方程为:,则有,解得,此时,直线l的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论