福建华安县第一中学2026届高一数学第一学期期末监测模拟试题含解析_第1页
福建华安县第一中学2026届高一数学第一学期期末监测模拟试题含解析_第2页
福建华安县第一中学2026届高一数学第一学期期末监测模拟试题含解析_第3页
福建华安县第一中学2026届高一数学第一学期期末监测模拟试题含解析_第4页
福建华安县第一中学2026届高一数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建华安县第一中学2026届高一数学第一学期期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点个数为()A.2 B.3C.4 D.52.一个球的内接正方体的表面积为54,则球的表面积为()A. B.C. D.3.如图,正方形中,为的中点,若,则的值为()A. B.C. D.4.若,则的值为A. B.C. D.5.设全集,集合,则等于A. B.C. D.6.A. B.C.2 D.47.将函数y=2sin(2x+)的图象向左平移个最小正周期后,所得图象对应的函数为()A. B.C. D.8.下列函数中为奇函数的是()A. B.C. D.9.如图所示,△A′B′C′是水平放置的△ABC的直观图,则在△ABC的三边及中线AD中,最长的线段是()A.AB B.ADC.BC D.AC10.点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为()A.30° B.45°C.60° D.90°二、填空题:本大题共6小题,每小题5分,共30分。11.某网店根据以往某品牌衣服的销售记录,绘制了日销售量的频率分布直方图,如图所示,由此估计日销售量不低于50件的概率为________12.已知圆C:(x﹣2)2+(y﹣1)2=10与直线l:2x+y=0,则圆C与直线l的位置关系是_____13.已知表示不超过实数的最大整数,如,,为取整函数,是函数的零点,则__________14.已知函数,其所有的零点依次记为,则_________.15.已知函数.(1)若在上单调递减,则实数的取值范围是___________;(2)若的值域是,则实数的取值范围是___________.16.函数的值域是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为锐角,(1)求的值;(2)求的值18.设,且.(1)求a的值及的定义域;(2)求在区间上的值域.19.已知函数(1)求的最小正周期;(2)讨论在区间上的单调递增区间20.已知函数(常数).(Ⅰ)当时,求不等式的解集;(Ⅱ)当时,求最小值.21.已知函数(1)求函数的最小值;(2)求函数的单调递增区间

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】先用诱导公式得化简,再画出图象,利用数形结合即可【详解】由三角函数的诱导公式得,函数的零点个数,即方程的根的个数,即曲线()与的公共点个数.在同一坐标系中分别作出图象,观察可知两条曲线的交点个数为3,故函数的零点个数为3故选:B.2、A【解析】球的内接正方体的对角线就是球的直径,正方体的棱长为a,球的半径为r,则,求出正方体棱长,再求球半径即可【详解】解:设正方体的棱长为a,球的半径为r,则,所以又因所以所以故选:A【点睛】考查球内接正方体棱长和球半径的关系以及球表面积的求法,基础题.3、D【解析】因为E是DC的中点,所以,∴,∴,考点:平面向量的几何运算4、B【解析】根据诱导公式将原式化简为,分子分母同除以,即可求出结果.【详解】因为,又,所以原式.故选B【点睛】本题主要考查诱导公式和同角三角函数基本关系,熟记公式即可,属于基础题型.5、A【解析】,=6、D【解析】因,选D7、C【解析】求解函数y的最小正周期,根据三角函数的平移变换规律,即可求解.【详解】函数y=2sin(2x+)其周期T=π,图象向左平移个最小正周期后,可得y=2sin[2(x+)+]=2sin(2x++)=2cos(2x+)故选C.【点睛】本题考查了最小正周期的求法和函数y=Asin(ωx+φ)的图象变换规律,属于基础题8、D【解析】利用奇函数的定义逐个分析判断【详解】对于A,定义域为,因为,所以是偶函数,所以A错误,对于B,定义域为,因为,且,所以是非奇非偶函数,所以B错误,对于C,定义域为,因为定义域不关于原点对称,所以是非奇非偶函数,所以C错误,对于D,定义域为,因为,所以是奇函数,所以D正确,故选:D9、D【解析】因为A′B′与y′轴重合,B′C′与x′轴重合,所以AB⊥BC,AB=2A′B′,BC=B′C′.所以在直角△ABC中,AC为斜边,故AB<AD<AC,BC<AC.故选D.10、C【解析】分别取AC.PC中点O.E.连OE,DE;则OE//PA,所以(或其补角)就是PA与BD所成的角;因PD⊥平面ABCD,所以PD⊥DC,PD⊥AD.设正方形ABCD边长为2,则PA=PC=BD=所以OD=OE=DE=,是正三角形,,故选C二、填空题:本大题共6小题,每小题5分,共30分。11、55【解析】用减去销量为的概率,求得日销售量不低于50件的概率.【详解】用频率估计概率知日销售量不低于50件的概率为1-(0.015+0.03)×10=0.55.故答案为:【点睛】本小题主要考查根据频率分布直方图计算事件概率,属于基础题.12、相交【解析】根据题意只需判断圆心到直线的距离与半径比较大小即可判断详解】由题意有圆心,半径则圆心到直线的距离故直线与圆C相交故答案为:相交【点睛】本题主要考查直线和圆的位置关系的判断,属于基础试题13、2【解析】由于,所以,故.【点睛】本题主要考查对新定义概念的理解,考查利用二分法判断函数零点的大概位置.首先研究函数,令无法求解出对应的零点,考虑用二分法来判断,即计算,则零点在区间上.再结合取整函数的定义,可求出的值.14、16【解析】由零点定义,可得关于的方程.去绝对值分类讨论化简.将对数式化为指数式,再去绝对值可得四个方程.结合韦达定理,求得各自方程两根的乘积,即可得所有根的积.【详解】函数的零点即所以去绝对值可得或即或去绝对值可得或,或当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得综上可得所有零点的乘积为故答案为:【点睛】本题考查了函数零点定义,含绝对值方程的解法,分类讨论思想的应用,由韦达定理研究方程根的关系,属于难题.15、①.②.【解析】(1)分析可知内层函数在上为减函数,且对任意的,恒成立,由此可得出关于实数的不等式组,由此可解得实数的取值范围;(2)分析可知为二次函数值域的子集,分、两种情况讨论,可得出关于实数的不等式组,综合可得出实数的取值范围.【详解】(1)令,.当时,,该函数为常值函数,不合乎题意.所以,,内层函数的对称轴为直线,由于函数在上单调递减,且外层函数为增函数,故内层函数在上为减函数,且对任意的,恒成立,所以,,解得;(2)因为函数的值域是,则为二次函数值域的子集.当时,内层函数为,不合乎题意;当时,则有,解得.综上所述,实数的取值范围是.故答案为:(1);(2).16、【解析】利用换元法,将变为,然后利用三角恒等变换,求三角函数的值域,可得答案.【详解】由,得,可设,故,不妨取为锐角,而,时取最大值),,故函数的值域为,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据题中条件,求出,,再由两角差的余弦公式,求出,根据二倍角公式,即可求出结果;(2)由(1)求出,,再由两角差的正切公式,即可求出结果.【详解】(1),为锐角,且,,则,,,,;(2)由(1),所以,则,又,,;.18、(1),;(2)【解析】(1)由代入计算可得的值,根据对数的真数大于零,求出函数的定义域;(2)由(1)可知,设,则,由的取值范围求出的范围,即可求出的值域;【详解】解:(1)∵,∴,∴,则由,解得,即,所以的定义域为(2),设,则,,当时,,而,,∴,,所以在区间上的值域为【点睛】本题考查待定系数法求函数解析式,对数型复合函数的值域,属于中档题.19、(1)最小正周期是(2)单调递增区间,【解析】(1)由三角恒等变换得,再求最小正周期;(2)整体代换得函数的增区间为,再结合求解即可.【小问1详解】解:.所以,,即最小正周期为.【小问2详解】解:令,解得,因为,所以,当时,得其增区间为;当时,得其增区间为;所以,在区间上单调递增区间为,20、(Ⅰ);(Ⅱ)答案见解析.【解析】(Ⅰ)由,得到,再由,利用一元二次不等式的解法结合对数函数的单调性求解;.(Ⅱ)化简得到函数,令,,转化为函数在上的最小值求解.,【详解】(Ⅰ)当时,,由得,即:,解得:,所以的解集为.(Ⅱ),,.令,因为,所以,若求在上的最小值,即求函数在上的最小值,,,对称轴为.①当时,即时,函数在为减函数,所以;②当时,即时,函数在为减函数,在为增函数,所以;③当,即时,函数在为增函数,所以.综上,当时,的最小值为;当时,的最小值为;当时,的最小值为.【点睛】方法点睛:(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论