版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河北省大名县第一中学数学高二上期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点是椭圆上的一点,点,则的最小值为A. B.C. D.2.在数列中,已知,则“”是“是单调递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.设函数,则下列函数中为奇函数的是()A. B.C. D.4.已知集合,,则()A. B.C. D.5.若数列满足,则数列的通项公式为()A. B.C. D.6.双曲线的左、右焦点分别为F1,F2,点P在双曲线上,下列结论不正确的是()A.该双曲线的离心率为B.该双曲线的渐近线方程为C.点P到两渐近线的距离的乘积为D.若PF1⊥PF2,则△PF1F2的面积为327.设等差数列,前n项和分别是,若,则()A.1 B.C. D.8.设函数的导函数是,若,则()A. B.C. D.9.在等比数列中,,,则()A. B.或C. D.或10.已知数列中,前项和为,且点在直线上,则=A. B.C. D.11.已知锐角的内角A,B,C的对边分别为a,b,c,若向量,,,则的最小值为()A. B.C. D.12.设,是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在等比数列中,若,,则_____14.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为____________.15.已知函数,若有两个零点,则的范围是______16.已知直线l1:(1)x+y﹣2=0与l2:(1)x+ay﹣4=0平行,则a=_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.18.(12分)已知函数f(x)=x-mlnx-m.(1)讨论函数f(x)的单调性;(2)若函数f(x)有最小值g(m),证明:g(m)在上恒成立.19.(12分)已知直线,,,其中与的交点为P(1)求过点P且与平行的直线方程;(2)求以点P为圆心,截所得弦长为8的圆的方程20.(12分)在平面直角坐标系中,已知直线:(t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为(1)求曲线C的直角坐标方程;(2)设点M的直角坐标为,直线l与曲线C的交点为A,B,求的值21.(12分)计算:(1)求函数(a,b为正常数)的导数(2)已知点P在曲线上,为曲线在点P处的切线的倾斜角,则的取值范围22.(10分)公差不为0的等差数列中,,且成等比数列(1)求数列的通项公式;(2)设,数列的前n项和为.若,求的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设,则,.所以当时,的最小值为.故选D.2、C【解析】分别求出当、“是单调递增数列”时实数的取值范围,利用集合的包含关系判断可得出结论.【详解】已知,若,即,解得.若数列是单调递增数列,对任意的,,即,所以,对任意的恒成立,故,因此,“”是“是单调递增数列”充要条件.故选:C.3、A【解析】求出函数图象的对称中心,结合函数图象平移变换可得结果.【详解】因为,所以,,所以,函数图象的对称中心为,将函数的图象向右平移个单位,再将所得图象向下平移个单位长度,可得到奇函数的图象,即函数为奇函数.故选:A4、B【解析】根据根式、分式的性质求定义域可得集合A,解一元二次不等式求集合B,再由集合的交运算求.【详解】∵,,∴故选:B5、D【解析】由,分两步,当求出,当时得到,两式作差即可求出数列的通项公式;【详解】解:因为①,当时,,当时②,①②得,所以,当时也成立,所以;故选:D6、D【解析】根据双曲线的离心率、渐近线、点到直线距离公式、三角形的面积等知识来确定正确答案.【详解】由题意可知,a=3,b=4,c=5,,故离心率e,故A正确;由双曲线的性质可知,双曲线线的渐近线方程为y=±x,故B正确;设P(x,y),则P到两渐近线的距离之积为,故C正确;若PF1⊥PF2,则△PF1F2是直角三角形,由勾股定理得,由双曲线的定义可得|PF1|﹣|PF2|=2a=6(不妨取P在第一象限),∴2|PF1||PF2|=100﹣2|PF1||PF2|,解得|PF1||PF2|=32,可得,故D错误.故选:D7、B【解析】根据等差数列的性质和求和公式变形求解即可【详解】因为等差数列,的前n项和分别是,所以,故选:B8、A【解析】求导后,令,可求得,再令可求得结果.【详解】因为,所以,所以,所以,所以,所以.故选:A【点睛】本题考查了导数的计算,考查了求导函数值,属于基础题.9、C【解析】计算出等比数列的公比,即可求得的值.【详解】设等比数列的公比为,则,则,所以,.故选:C.10、C【解析】点在一次函数上的图象上,,数列为等差数列,其中首项为,公差为,,数列的前项和,,故选C考点:1、等差数列;2、数列求和11、C【解析】由,得到,根据正弦、余弦定理定理化简得到,化简得到,再结合基本不等式,即可求解.【详解】由题意,向量,,因为,所以,可得,由正弦定理得,整理得,又由余弦定理,可得,因为,所以,由,所以,因为是锐角三角形,且,可得,解得,所以,所以,当且仅当,即时等号成立,故的最小值为.故选:C12、B【解析】分析:由双曲线性质得到,然后在和在中利用余弦定理可得详解:由题可知在中,在中,故选B.点睛:本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据等比数列下标和性质计算可得;【详解】解:∵在等比数列中,,∴原式故答案为:【点睛】本题考查等比数列的性质的应用,属于基础题.14、160【解析】∵某个年级共有980人,要从中抽取280人,∴抽取比例为,∴此样本中男生人数为,故答案为160.考点:本题考查了分层抽样的应用点评:掌握分层抽样的概念是解决此类问题的关键,属基础题15、【解析】利用导数求出函数的最小值,结合函数的图象列式可求出结果.【详解】,当时,,在上为增函数,最多只有一个零点,不符合题意;当时,令,得,令,得,所以在上为减函数,在上为增函数,所以在时取得极小值为,也是最小值,因为当趋近于正负无穷时,都是趋近于正无穷,所以要使有两个零点,只要,即就可以了.所以的范围是故答案为:.16、2【解析】根据两直线平行的充要条件求解【详解】因为已知两直线平行,所以,解得故答案为:【点睛】本题考查两直线平行的充要条件,两直线平行的充要条件是,或,在均不为0时,用表示容易理解与记忆三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析;(Ⅱ).【解析】本题考查线面平行、线线平行、向量法等基础知识,考查空间想象能力、分析问题的能力、计算能力.第一问,利用线面平行的定理,先证明线线平行,再证明线面平行;第二问,可以先找到线面角,再在三角形中解出正弦值,还可以用向量法建立直角坐标系解出正弦值.试题解析:(Ⅰ)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面PAB),点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED.所以四边形BCDE是平行四边形.从而CM∥EB.又EB平面PBE,CM平面PBE,所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(Ⅱ)方法一:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.从而CD⊥PD.所以PDA是二面角P-CD-A的平面角.所以PDA=45°.设BC=1,则在Rt△PAD中,PA=AD=2.过点A作AH⊥CE,交CE的延长线于点H,连接PH.易知PA⊥平面ABCD,从而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.过A作AQ⊥PH于Q,则AQ⊥平面PCE.所以APH是PA与平面PCE所成的角.在Rt△AEH中,AEH=45°,AE=1,所以AH=.在Rt△PAH中,PH==,所以sinAPH==.方法二:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.于是CD⊥PD.从而PDA是二面角P-CD-A的平面角.所以PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.设BC=1,则在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A为原点,以,的方向分别为x轴,z轴的正方向,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以=(1,0,-2),=(1,1,0),=(0,0,2)设平面PCE的法向量为n=(x,y,z),由得设x=2,解得n=(2,-2,1).设直线PA与平面PCE所成角为α,则sinα==.所以直线PA与平面PCE所成角的正弦值为.考点:线线平行、线面平行、向量法.18、(1)答案见解析(2)证明见解析【解析】(1)求出函数的导数,讨论其符号后可得函数的单调区间.(2)根据(1)的结论可得函数的最小值,再利用导数可证不等式.【小问1详解】函数的定义域为,且,当时,在上恒成立,所以此时在上为增函数,当时,由,解得,由,解得,所以在上为减函数,在上为增函数,综上:当时,在上为增函数,当时,在上为减函数,在上为增函数;【小问2详解】由(1)知:当时,在上为增函数,无最小值.当时,在上上为减函数,在上为增函数,所以,即,则,由,解得,由,解得,所以在上为增函数,在上为减函数,所以,即在上恒成立.19、(1);(2).【解析】(1)首先求、的交点坐标,根据的斜率,应用点斜式写出过P且与平行的直线方程;(2)根据弦心距、弦长、半径的关系求圆的半径,结合P的坐标写出圆的方程.【小问1详解】联立、得:,可得,故,又的斜率为,则过P且与平行的直线方程,∴所求直线方程为.【小问2详解】由(1),P到的距离,∴以P为圆心,截所得弦长为8的圆的半径,∴所求圆的方程为.20、(1)(2)【解析】【小问1详解】由,得.两边同乘,即.由,得曲线的直角坐标方程为【小问2详解】将代入,得,设A,B对应的参数分别为则所以.由参数的几何意义得21、(1)(2)【解析】(1)根据导数的运算法则,结合复合函数的求导法则,可得答案;(2)求出函数的导数,结合基本不等式求得导数的取值范
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年电力设备绝缘性能检测专项试题及答案
- 2025年职业院校实训教学管理教师招聘岗位应用能力考核试卷及答案
- 起重机械安全管理制度
- 2026年江苏省人力资源管理师三级考试题库含答案
- 2025年检验科生物安全培训考核试题(附答案)
- 2025年高一美术教师年度工作总结模版
- 住院患者知情同意书
- 建设工程施工合同纠纷要素式起诉状模板即下即填超方便
- 片剂制备技术课件
- 2026 年专用型离婚协议书法定版
- 国家开放大学行管专科《行政组织学》期末纸质考试总题库(2025春期版)
- 切削液回收及处理合同模板
- 2023年移动综合网络资源管理系统技术规范功能分册
- 幼儿园大班班本课程-邂逅水墨课件
- 计算机辅助翻译智慧树知到期末考试答案章节答案2024年西华大学
- HGT 2520-2023 工业亚磷酸 (正式版)
- 阎良现代设施花卉产业园规划设计方案
- 2023-2024学年成都市金牛区九年级上英语(一诊)期末考试题(含答案)
- 220kV直流系统全部检验作业指导书
- “超额利润资料新提成”薪酬激励方案
- 广东广州市黄埔区统计局招考聘用市商业调查队队员参考题库+答案详解
评论
0/150
提交评论