版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昆明市公务员考试数量关系专项练习题
第一部分单选题(150题)
1、2.1,2.2,4.1,4.4,16.1,()
A、32.4
B、16.4
C、32.16
D、16.16
【答案】:答案:D
解析:偶数项的小数部分和整数部分相同。故选D。
2、2,3,10,15,26,35,()
A、40
B、45
C、50
I)、55
【答案】:答案:C
解析:2=1平方+1,3=2平方-1,10=3平方+1,15=4平方-1,26二5平
方+1,35=6平方-1,问号=7平方+1,问号二50。故选C。
3、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能
投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,
甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少
再得多少票就一定当选?()
A、15
B、13
C、10
D、8
【答案】:答案:B
解析:构造最不利,由题意,还剩30名员工没有投票,考虑最不利的
情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,
其余25张选票中,甲只要在获得13张选票就可以确定当选。故选B。
4、2,3,6,18,108,()
A、1944
B、1620
C、1296
D、1728
【答案】:答案:A
解析:2X3=6,3X6=18,6X18=108,……前两项相乘等于下一项,
则所求项为18X108,尾数为4。故选A。
5、12,23,35,47,511,()
A、613
B、612
C、611
D、610
【答案】:答案:A
解析:数位数列,各项首位数字“1,2,3,4,5,(6)”构成等差数
列,其余数字“2,3,5,7,11,(13)”构成质数数列。因此,未知
项为613o故选A。
6、从1开始的第2009个奇数是()。
A、4011
B、4013
C、4015
D、4017
【答案】:答案:D
解析:因为每两个相邻的奇数均相差2,而第2009个奇数是第1个奇
数1之后的第2008个奇数,那么第2009个奇数应该是1+2008X2=
4017o故选D。
7、8,10,14,18,()
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8X2-6=10;10X2-6=14;14X2-10=18;18X2-10=26o故选C。
8、2,6,18,54,()
A、186
B、162
C、194
D、196
【答案】:答案:B
解析:该数列是以3为公比的等比数列,故空缺项为:54X3=162。故
选B。
9、1,7,8,57,()
A、123
B、122
C、121
D、120
【答案】:答案:C
解析:12+7=8,72+8=57,82+57=1210故选C。
10、某高速公路收费站对过往车辆的收费标准是:大型车30元/辆、
中型车15元/辆、小型车10元/辆。某天,通过收费站的大型车与中
型车的数量比是5:6,中型车与小型车的数量比是4:11,小型车的
通行费总数比大型车的多270元,这天的收费总额是()。
A、7280元
B、7290元
C、7300元
14、某种茶叶原价30元一包,为了促销,降低了价格,销量增加了二
倍,收入增加了五分之三,则一包茶叶降价()元。
A、12
B、14
C、13
D、11
【答案】:答案:B
解析:设原来茶叶的销量为1,那么现在销量为3。原来收入为30元,
现在收入为30义(1+3/5)=48元,每包茶叶为48+3=16元,降价30
—16=14元。故选Bo
15、2.08,8.16,24.32,64.64,()
A、160.28
B、124.28
C、160.56
D、124.56
【答案】:答案:A
解析:小数点之前满足规律:(8-2)X4=24,(24-8)X4=64,(64-
24)X4=160,排除B.D两项。小数点之后构成等比数列8,16,32,64,
128,小数点之后的数超过三位取后两位,所以未知项是160.28。故选
Ao
16、某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每
天平均生产20套服装,就比订货任务少生产100套;如果每天生产23
套服装,就可超过订货任务20套。那么,这批服装的订货任务是多少
套?()
A、760
B、1120
C、900
D、850
【答案】:答案:C
解析:由题意每天生产多出3套,总共就会多生产出120,那么计划的
天数为40天,所以室批服装为20X40+100=900(套)。故选C。
17、某收藏家有三个古董钟,时针都掉了,只剩下分针,而且都走得
较快,每小时分别快2分钟、6分钟及12分钟。如果在中午将这三个
钟的分针都调整指向钟面的12点位置,多少小时后这3个钟的分针会
指在相同的分钟位置?
A.24
B.26
C.28
D.30
【答案】:答案:D
解析:由题意可得:假设每小时快2分钟、快6分钟、快12分钟的古
董钟分别为A钟、B钟、C钟,则B钟与A钟速度差为分钟/小时,已
知整个钟盘有60分钟,即经过小时,B钟的分针比A钟的分针恰好多
走一圈,且此时两钟分针重合,同理,C钟与A钟速度差为分钟/小时,
即经过小时,C钟的分针比A钟的分针恰好多走一圈,此时两钟分针重
合,取6和15的最小公倍数30,即经过30小时,B钟的分针比A钟
的分针恰好多走2圈,C钟的分针比A钟的分针恰好多走5圈,且此时
三个分针处于同一个位置。故正确答案为D,
18、四人年龄为相邻的自然数列且最年长者不超过30岁,四人年龄之
乘积能被2700整除且不能被81整除。则四人中最年长者多少
岁?()
A、30
B、29
C、28
D、27
【答案】:答案:C
解析:结合最年长者,优先从选项最大值代入:A选项:
30X29X28X27,尾数只有一个0,不能被2700整除,排除;B选项:
29X28X27X26,尾数不为0,不能被2700整除,排除;C选项:
28X27X26X25=(4X7)X27X26X25,能被2700整除,不能被81整
除,正确。故选C。
19、7,7,9,17,43,()
A、119
B、117
C、123
D、121
【答案】:答案:C
解析:依次将相邻两项做差得0,2,10,26,再次做差得2,6,18。
构成一个公比为3的等比数列,即所填数字为43+26+18X3=123。故选
Co
20、一条马路的两边各立着10盏电灯,现在为了节省用电,决定每边
关掉3盏,但为了安全,道路起点和终点两边的灯必须是亮的,而且
任意一边不能连续关掉两盏。问总共有多少种方案?()
A、120
B、320
C、400
D、420
【答案】:答案:C
解析:每一边7盏亮着的灯形成6个空位,把3盏熄灭的灯插进去,
则共有=400种方案。故选C。
21、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只
好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一
倍,则步行了多少分钟?()
A、20
B、34
C、40
D、50
【答案】:答案:A
解析:设骑车速度为2,步行速度为1,设步行时间为t分钟,由题意
可知,50X2=2(50+10-t)+lt,得t=20,即步行了20分钟。故选A。
22、21,27,40,61,94,148,()
A、239
B、242
C、246
D、252
【答案】:答案:A
解析:依次将相邻两项作差得6,13,21,33,54;二次作差得7,8,
12,21;再次作差得12,22,32,是连续自然数的平方。即所填数字为
42+21+54+148=239o故选A。
23、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多
少?()
A、256
B、486
C、556
D、376
【答案】:答案:B
解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把
大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2
与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆
分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使
加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不
如将它换成2个3。因为2X2X2=8,而3X3=9。故拆分出的自然数中,
至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,
其乘积最大,最大值为243X2=486。故选瓦
24、有4堆木材,都堆成正三角形垛,层数分别为5,6,7,8层,那么
共有木材()根。
A、110
B、100
C、120
I)、130
【答案】:答案:B
解析:5层木材有1+2+3+4+5=15,6层木材有1+2+3+4+5+6=21,7层木
材有1+2+3+4+5+6+7=28,8层木材有1+2+3+4+5+6+7+8=36,所以共有
15+21+28+36=100根木材。故选B。
25、5,17,21,25,()
A、30
B、31
C、32
D、34
【答案】:答案:B
解析:都为奇数。故选B。
26、1,2,3,6,12,24,()
A、48
B、45
C、36
D、32
【答案】:答案:A
解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,
第N项=第N—1项+…+第一项,即所填数字为1+2+3+6+12+24
=48。故选A。
27、现有5盒动画卡片,各盒卡片张数分别为:7、9、11、14、17。
卡片按图案分为米老鼠、葫芦娃、喜羊羊和灰太狼4种,每个盒内装
的是同图案的卡片。已知米老鼠的卡片只有一盒,而喜羊羊、灰太狼
图案的卡片数之和比葫芦娃图案的多1倍。据此可知,图案为米老鼠
的卡片张数为()。
A、7
B、9
C、14
1)、17
【答案】:答案:A
解析:(喜洋洋+灰太狼):葫芦娃二2:1,喜洋洋+灰太狼+葫芦娃是3
的倍数;总张数=7+9+11+14+17=58张,58除以3余1,可得米老鼠的卡
片只能是7张。故选A。
28、118,199,226,(),238
A、228
B、230
C、232
D、235
【答案】:答案:D
解析:相邻两项后一项减前一项,199-118=81,226-199=27,235-
226=9,238-235=3,是公比为的等比数列,即所填数字为238-
3=226+9=235o故选D。
29、从A地到B地为上坡路。自行车选手从A地出发按A-B-A-B的路
线行进,全程平均速度为从B地出发,按B-A-B-A的路线行进的全程
平均速度的4/5,如自行车选手在上坡路与下坡路上分别以固定速度匀
速骑行,问他上坡的速度是下坡速度的()。
A、1/2
B、1/3
C、2/3
D、3/5
【答案】:答案:A
解析:S=VT,当S一定的时候,VT成反比,两次行程的平均速度之比
是4:5,故两次行程所用时间之比Tl:T2=5:4o设一个1、坡的时间是1,
一个上坡的时间是n,则上坡速度是下坡速度的1/n。A-B-A-B的过程
经历了2个上坡和1个下坡,则Tl=2n+1;B-A-B-A的过程经历了2个
下坡和1个上坡,则T2=2+n,而Tl:T2=5:4=(2n+1):(2+n),解得
n=2o故选A。
30、A、B、C三个试管中各盛有10克、20克、30克水,把某种浓度的
盐水10克倒入A中,充分混合后从A中取出10克倒入B中,再充分
混合后从B中取出10克倒入C中,最后得到C中盐水的浓度为0.5%。
则开始倒入试管A中的盐水浓度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含盐量为(30+10)X0.5%=0.2克,即从B中取出的10克
中含盐0.2克,则B的浓度为0.2+10=2%,进而求出B中含盐量为
(20+10)X2%=0.6克,即从A中取出的10克中含盐0.6克,可得A
的浓度为0.64-10=6%,进一步得出A中含盐量为(10+10)X6%=1.2
克,故开始倒入A中的盐水浓度为L2+10=12%。故选A。
31、3,11,13,29,31,()
A、52
B、53
C、54
D、55
【答案】:答案:D
解析:奇偶项分别相差11-3=8,29-13=16=8X2,问号-31=24=8X3则
可得?二55。故选D。
32、钟表有一个时针和一个分针,分针每一小时转360度,时针每12
小时转360度,则24小时内时针和分针成直角共多少次:
A.28
B.36
C.44
I).48
【答案】:答案:C
解析:一般情况,1小时内会出现2次垂直情况,但是3点、9点、15
点、21点这4个特殊时间,只有1次垂直,所以有。故正确答案为Co
33、某班有56名学生,每人都参加了a、b、c、d、e五个兴趣班中的
一个。已知有27人参加a兴趣班,参加b兴趣班的人数第二多,参加
c、d兴趣班的人数相同,e兴趣班的参加人数最少,只有6人,问参
加b兴趣班的学生有多少个?()
A、7个
B、8个
C、9个
D、10个
【答案】:答案:C
解析:设b班人数为x,c、d班的人数均为y,由b班人数第二多,e
班人数最少,可知各班人数关系为:27>x>y>6o该班有56名学生,
56=27+x+y+y+6,即x+2y=23,其中2y是偶数,23为奇数,则x为奇
数,排除B、Do代入A选项,当x=7时,y=8,则x<Y,不符合题意,
排除。故选C。
34、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只
好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一
倍,则步行了多少分钟?()
A、20
B、34
C、40
D、50
【答案】:答案:A
解析:设骑车速度为2,步行速度为1,设步行时间为t分钟,由题意
可知,50X2=2(50+10-t)+lt,得t=20,即步行了20分钟。故选A。
35、把一根钢管锯成5段需要8分钟,如果把同样的钢管锯成20段需
要多少分钟?()
A、32分钟
B、38分钟
C、40分钟
D、152分钟
【答案】:答案:B
解析:把一根钢管锯成5段需要锯4次,所以每锯一次需要8・4二2(分
钟)。则锯20段需要锯19次,所需的时间为19X2=38(分钟)。故选B。
36、-24,3,30,219,()
A、289
B、346
C、628
I)、732
【答案】:答案:D
解析:-24=(-3)3+3,3=03+3,30=33+3,219=63+3,即所填数字为
93+3=732o故选D。
37、-7,0,1,2,9,()
A、42
B、18
C、24
D、28
【答案】:答案:D
解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1o故选
Do
38、130,68,30,{),2
A、11
B、12
C、10
I)、9
【答案】:答案:C
解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故选C。
39、7,9,-1,5,()
A、3
B、-3
C、2
D、-1
【答案】:答案:B
解析:7+9=16,9+(-1)=8,(-1)+5=4,5+(-3)=2,其中16,8,4,2
等比。故选B。
40、41,59,32,68,72,()
A、28
B、36
C、40
D、48
【答案】:答案:A
解析:两两分组得到(41,59),(32,68),(72,()),发现组内
做和均为100o故选A。
41、30个小朋友围成一圈玩传球游戏,每次球传给下一个小朋友需要
1秒。当老师喊“转向”时,要改变传球方向。如果从小华开始传球,
老师在游戏开始后的第16、31、49秒喊“转向”,那么在第多少秒时,
球会重新回到小华手上?()
A、68
B、69
C、70
D、71
【答案】:答案:A
解析:设小华的位置为0号,按顺时针方向编号依次为0号、1号、2
号、……、29号。小华以顺时针方向开始传球。①经过16秒,顺时针
传到16号;②转向:经过15秒(31—16=15),逆时针传到1号;③
转向:经过18秒(49—31=18),顺时针传到19号;④转向:经过19
秒,逆时针传回到小华手中。在第49+19=68(秒)时,球会重新回到
小华手上。故选A。
42、A地到B地的道路是下坡路。小周早上6:00从A地出发匀速骑车
前往B地,7:00时到达两地正中间的C地。到达B地后,小周立即匀
速骑车返回,在10:00时又途经C地。此后小周的速度在此前速度的
基础上增加1米/秒。最后在11:30回到A地。问A、B两地间的距
离在以下哪个范围内?
A.40〜50公里
B.大于50公里
C.小于30公里
D.30〜40公里
【答案】:答案:A
解析:设小周下坡速度为,上坡速度为。根据条件分析可列下表:在
上坡阶段B-OCT,可得,解得=3m/s,根据lm/s=3600m/h,因此。
故正确答案为Ao
43、21,27,40,61,94,148,()
A、239
B、242
C、246
D、252
【答案】:答案:A
解析:依次将相邻两项作差得6,13,21,33,54;二次作差得7,8,
12,21;再次作差得12,22,32,是连续自然数的平方。即所填数字为
42+21+54+148=239o故选A。
44、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收
取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按
8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月
用水总量最多为多少吨?()
A、17.25
B、21
C、21.33
D、24
【答案】:答案:B
解析:总费用一定,要使两个月的用水总量最多,需尽量使用低分水。
先将两个月4元/吨的额度用完,花费4X5X2=40(元);再将6元/吨
的额度用完,花费6X5X2=60(元)。由两个月共交水费108元可知,
还剩108—40—60=8(元),可购买1吨单价为8元/吨的水。该户居民
这两个月用水总量最多为5X2+5X2+1=21(吨)。故选B。
45、在某城市中,有60%的家庭订阅某种日报,有85%的家庭有电视机。
假定这两个事件是独立的,今随机抽出一个家庭,所抽家庭既订阅该
种日报又有电视机的概率是()。
A、0.09
B、0.25
C、0.36
D、0.51
【答案】:答案:D
解析:由于是独立重复试验,故既订阅该中日报又有电视机的概率是
60%X85%=51%o故选D。
46、1,3,2,6,11,19,()
A、24
B、36
C、29
D、38
【答案】:答案:B
解析:该数列为和数列,即前三项之和为第四项。故空缺处应为
6+11+19=36。故选B。
47、有一只青蛙在井底,每天上爬10米,又下滑6米,这口井深20
米,这只青蛙爬出井口至少需要多少天?()
A、2
B、3
C、4
D、5
【答案】:答案:C
解析:第一天青蛙爬了10-6=4米,距离井口20-4=16米;第二天爬了
4+(10-6)=8米,距离井口20-8=12米;第三天爬了8+(10-6)=12米,距
离井口20-12=8米<10米;第四天青蛙可以直接爬出井口。这只青蛙爬
出井口至少要4天。故选C。
48、3,2,2,5,17,()
A、24
B、36
C、44
1)、56
【答案】:答案:D
解析:依次将相邻而个数中后一个数减去前一个数得一1,0,3,12,
再次作差得1,3,9,构成公比为3的等比数列,即所填数字为9X3
+12+17=56。故选D。
49、3,-6,12,-24,()
A、42
B、44
C、46
D、48
【答案】:答案:D
解析:公比为-2的等比数列。故选D。
50、小张购买了2个革果、3根香蕉、4个面包和5块蛋糕,共消费58
元。如果四种商品的单价都是正整数且各不相同,则每块蛋糕的价格
最高可能为多少元?()
A、5
B、6
C、7
D、8
【答案】:答案:D
解析:设苹果、香蕉、面包、蛋糕的单价分别为x、y、z、w,根据共
消费58元,得2x+3y+4z+5w=58。代入排除,根据最高,优先从值
最大的选项代入。D选项,当w=8时,可得2x+3y+4z=18,由2x、
4z、18均为偶数,则3y为偶数,即y为偶数且小于6。当y=2,有
2x+4z=12,即x+2z=6,均为正整数且各不相同,若z=l,则x=4,
此时满足题意。故选D。
51、1,2,0,3,-1,4,()
A、~2
B、0
C、5
D、6
【答案】:答案:A
解析:奇数项1、0、-1、(-2)是公差为T的等差数列;偶数项2、3、4
是连续自然数。故选A。
52、-56,25,-2,7,4,()
A、3
B、-12
C、-24
D、5
【答案】:答案:D
解析:-56—25=-3X[25—(—2)],25—(—2)=—3X(—2—7),
—2—7=—3X(7-4),第(N—1)项一第N项=-3[第N项一第(N+1)
项](N22),即所填数字为4—=5。故选D。
53、6,9,10,14,17,21,27,()
A、28
B、29
C、30
D、31
【答案】:答案:C
解析:依次将奇数项做差得10-6=4.17-10=7.27-17=10,4、7、10
构成公差为3的等差数列;又依次将偶数项做差得14-9=5.21-14=7,
若加入9则5、7、9可构成公差为2的等差数列,即所填数字为
21+9=30o故选C。
54、4,8,28,216,()
A、6020
B、2160
C、4200
D、4124
【答案】:答案:A
解析:4X(8—1)=28,8X(28-1)=216,即所填数字为28X(216—1)
=6020。故选A。
55、一条马路的两边各立着10盏电灯,现在为了节省用电,决定每边
关掉3盏,但为了安全,道路起点和终点两边的灯必须是亮的,而且
任意一边不能连续关掉两盏。问总共有多少种方案?()
A、120
B、320
C、400
D、420
【答案】:答案:C
解析:每一边7盏亮着的灯形成6个空位,把3盏熄灭的灯插进去,
则共有=400种方案。故选C。
56、1,10,26,75,196,()
A、380
B、425
C、520
D、612
【答案】:答案:C
解析:第一步相差,得到9,16,49,121,明显是平方,分别是3,4,7,
11的平方,发现都是第一项+第二项二第三项,所以下一个差值是(7+11)
的平方,也就是18的平方,而下个数就应该是196+18的平方等于520。
故选Co
57、(1296-18)+36的值是()。
A、20
B、35.5
C、19
I)、36
【答案】:答案:B
解析:原式可转化为1296+36-18♦36=36-0.5二35.5。故选B。
58、某饮料店有纯果汁(即浓度为100%)10千克,浓度为30%的浓缩还
原果汁20千克。若取纯果汁、浓缩还原果汁各10千克倒入10千克纯
净水中,再倒入10千克的浓缩还原果汁,则得到的果汁浓度为多少。
()
A、40%
B、37.5%
C、35%
D、30%
【答案】:答案:A
解析:根据题干可得,一共倒入纯果汁(即浓度为100%)10千克,纯净
水10千克,浓度为30%的浓缩还原果汁20千克。可知最终溶液的量为
10+10+20=40(千克),最终溶质为10+20X30斤16(千克)。则最终果汁
浓度=16+40X100%=40%。故选A。
59、要将浓度分别为20%和5%的A、B两种食盐水混合配成浓度为15%
的食盐水900克,问5%的食盐水需要多少克?()
A、250
B、285
C、300
D、325
【答案】:答案:C
解析:设需要5%的食盐水x克,则需要20%的食盐水(900—x)克;根
据混合后浓度为15%,#[xX5%+(900-x)X20%]=900X15%,解得x
=300(克)。故选C。
60、某小区有40%的住户订阅日报,有15%的住户同时订阅日报和时报,
至少有75%的住户至少订阅两种报纸中的一种,问订阅时报的比例至少
为多少?()
A、35%
B、50%
C、55%
D、60%
【答案】:答案:B
解析:设订阅时报的住户为x,至少订阅一种报纸的人数为40%+x—
15%o由至少75%的住户至少订阅两种报纸中的一种得,40%+x-
15%^75%,解得x250虬故选B。
61、某陶瓷公司要到某地推销瓷器,公司与该地相距900千米。已知
瓷器成本为每件4000元,每件瓷器运费为2.5元/千米。如果在运输
及销售过程中瓷器的损耗为25%,那么该公司要想实现20%的利润率,
瓷器的零售价应是()元。
A、8000
B、8500
C、9600
I)、1000
【答案】:答案:D
解析:以一件瓷器为例,1件瓷器成本为4000元,运费为
2.5X900=2250元,则成本为4000+2250=6250元,要想实现20%的利
润率,应收入6250X(l+20%)=7500元;由于损耗,实际的销售产品数
量为IX(1-25%)=75%,所以实际零售价为75004-75%=1000元。故选D。
62、2,1,2/3,1/2,()
A、3/4
B、1/4
C、2/5
D、5/6
【答案】:答案:C
解析:数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,
8等差,所以后项为4/10=2/5。故选C。
63、某楼盘的地下停车位,第一次开盘时平均价格为15万元/个;第二
次开盘时,车位的销售量增加了一倍、销售额增加了60机那么,第二
次开盘的车位平均价格为()o
A、10万元/个
B、11万元/个
C、12万元/个
D、13万元/个
【答案】:答案:C
解析:销售额;平均,介格X销售量,已知第一次开盘平均价格为15万
元/个,赋销售量为1,则销售额为15万。第二次开盘时,销售量增加
了一倍,即为2,销售额增加了60%,得销售额为15义(1+60%)=24(万
元),故第二次开盘平均价格为24+2=12(万元/个)。故选C。
64、12,23,34,45,56,()
A、66
B、67
C、68
D、69
【答案】:答案:B
解析:依次将相邻两个数中后一个数减去前一个数,构成公差为11的
等差数列,即所填的数字为56+11=67。故选B。
65、有苹果若干个,若把其换成桔子,则多换5个;若把其换成菠萝,
则少掉7个,已知每个桔子4角9分钱,每个菠萝7角钱,每个苹果
的单价是多少?()
A、5角
B、5角8分
C、5角6分
D、5角4分
【答案】:答案:C
解析:此题可理解龙:把苹果全部卖掉,得到钱若干,若用这些钱买
成同样数量的桔子,则剩下49X5=245分,若用这些钱买成同样数量
的菠萝,则缺少70X7=490分,所以苹果个数=(245+490)+(70-
49)=35个,苹果总价二49X35+49X5=1960分,每个苹果单价
=1960+35=56分=5角6分。故选C。
66、有苹果若干个,若把其换成桔子,则多换5个;若把其换成菠萝,
则少掉7个,已知每个桔子4角9分钱,每个菠萝7角钱,每个苹果
的单价是多少?()
A、5角
B、5角8分
C、5角6分
D、5角4分
【答案】:答案:C
解析:此题可理解龙:把苹果全部卖掉,得到钱若干,若用这些钱买
成同样数量的桔子,则剩下49X5=245分,若用这些钱买成同样数量
的菠萝,则缺少70X7=490分,所以苹果个数=(245+490)+(70-
49)=35个,苹果总价二49X35+49X5=1960分,每个苹果单价
=1960+35=56分=5角6分。故选C。
67、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只
能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,
甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少
再得多少票就一定当选?()
A、15
B、13
C、10
D、8
【答案】:答案:B
解析:构造最不利,由题意,还剩30名员工没有投票,考虑最不利的
情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,
其余25张选票中,甲只要在获得13张选票就可以确定当选。故选B。
68、商店购入一百多件A款服装,其单件进价为整数元,总进价为1
万元,已知单件B款服装的定价为其进价的L6倍,其进价为A款服
装的75%,销售每件B款服装的利润为A款服装的一半,某日商店以定
价销售A款服装的总销售额超过2500元,问当天至少销售了多少件A
款服装?()
A、13
B、15
C、17
D、19
【答案】:答案:C
解析:推出A款服装有125件,进价为80元,B款服装进价为
80X0.75=60(元),B款服装定价为60X1.6=96(元),利润为96-
60=36(元),A款服装利润为36X2=72(元),所以A款服装售价为
80+72=152(元)。销售数量至少为2500・152=16.4,取整为17件。故
选Cc
69、187,259,448,583,754,()
A、847
B、862
C、915
D、944
【答案】:答案:B
解析:各项数字和均为16。故选B。
70、调研人员在一次市场调查活动中收回了435份调查问卷,其中80%
的调查问卷上填写了被调查者的手机号码。那么调研人员至少需要从
这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后
两位相同的被调查者?()
A、101
B、175
C、188
D、200
【答案】:答案:C
解析:在435份调查问卷中有435X20脏87份没有写手机号;且手机号
码后两位可能出现的情况一共10X10=100种,因此要保证一定能找到
两个手机号码后两位相同的被调查者,至少需要抽取87+100+1=188份。
故选C。
71、甲种酒精有4升,乙种酒精有6升,混合成的酒精含酒精62%;如
果两种酒精溶液一样多,混合成的酒精溶液含酒精61%,乙种酒精溶液
含有纯酒精百分之几?()
A、56
B、66
C、58
D、64
【答案】:答案:B
解析:设甲种酒精浓度蝴,乙种酒精浓度y%。那么,
4Xx%+6Xy%=(4+6)X62%,x%+y%=2X61%,得x=56,y=66,即乙种酒
精浓度为66%o故选B。
72、某木场有甲,乙,丙三位木匠师傅生产桌椅,甲每天能生产12张
书桌或13把椅子;乙每天能生产9张书桌或12把椅子,丙每天能生
产9张书桌或15把埼子,现在书桌和椅子要配套生产(每套一张书桌
一把椅子),则7天内这三位师傅最多可以生产桌椅()套。
A、116
B、129
C、132
D、142
【答案】:答案:B
解析:将甲、乙、丙三位木匠师傅生产桌椅的效率列表如下,分析可
知,甲生产书桌的相对效率最高,丙生产椅子的相对效率最高,则安
排甲7天全部生产书桌,丙7天全部生产椅子,乙协助甲丙完成。甲7
天可生产桌子12X7=84(张),丙7天可生产椅子15X7=105(把)。
设乙生产书桌x天,则生产椅子(7—x)天,当生产的书桌数与椅子数
相同时,获得套数最多,可列方程84+9x=105+12X(7—x),解得x
=5,则乙可生产书桌9义5=45(张)。故7天内这三位师傅最多可以生
产桌椅84+45=129(套)。故选B。
73、甲、乙二人现在的年龄之和是一个完全平方数。7年前,他们各自
的年龄都是完全平方数。再过多少年,他们的年龄之和又是完全平方
数?()
A、20
B、18
C、16
D、9
【答案】:答案:B
解析:设七年前甲、乙的年龄分别为x、y岁,则七年后两人的年龄和
为(x+7)+(y+7)=x+y+14,根据题意x、y、x+y+14均为完全平方数c
100以内的平方数有1、4、9、16、25、36、49、64、81、100,其中
1+49+14=64,1、49、64均为完全平方数,则七年前甲1岁,乙49岁,
现在甲为8岁,乙为56岁,年龄和为64,甲乙年龄和为偶数,下一个
平方数为偶数的是100,需要再过(100-64)+2=18年。故选B。
74、-1,3,-3,~3,-9,()
A、-9
B、-4
C、-14
D、-45
【答案】:答案:D
解析:题干倍数关系明显,考虑作商。后项除以前项得到新数列:-3、
-1、1、3,新数列龙公差是2的等差数列,则新数列的下一项应为5,
所求项为:-9X5=45。故选D。
75、7.1,8.6,14.2,16.12,28.4,()
A、32.24
B、30.4
C、32.4
D、30.24
【答案】:答案:A
解析:奇数项依次为:7.K14.2.28.4,是公比为2的等比数列;偶
数项依次为:8.6、16.12,是公比为2的等比数列,即所填数字为
16.12X2=32.240故选A。
76、3,-6,12,-24,()
A、42
B、44
C、46
D、48
【答案】:答案:D
解析:公比为-2的等比数列。故选D。
77、8,3,17,5,24,9,26,18,30,()
A、22
B、25
C、33
D、36
【答案】:答案:B
解析:多重数列。很明显数列很长,确定为多重数列。先考虑交叉,
发现没有规律,无对应的答案。因为总共十项,考虑两两分组,再内
部作加减乘除方等运算,发现每两项的和依次为11,22,33,44,
(55=30+25)o故选B。
78、7.1,8.6,14.2,16.12,28.4,()
A、32.24
B、30.4
C、32.4
D、30.24
【答案】:答案:A
解析:奇数项和偶数项间隔来看,整数部分和小数部分分别构成公比
为2的等比数列。故选A。
79、1,2,3,6,12,()
A、16
B、20
C、24
D、36
【答案】:答案:C
解析:分3组二>(1,2),(3,6),(12,24)二>每组后项除以前项二>2、
2、2O故选C。
80、1,2,6,30,210,()
A、1890
B、2310
C、2520
D、2730
【答案】:答案:B
解析:2+1=2,6+2=3,304-6=5,2104-30=7,相邻两项后一项
除以前一项的商构成连续的质数列,即所填数字为210X11=2310。故
选B。
81、2/3,1/2,3/7,7/18,()
A、4/11
B、5/12
C、7/15
D、3/16
【答案】:答案:A
解析:4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4、5、6、7,
接下来是8.分母是6、10、14、18,接下来是22。故选A。
82、-1,6,25,62,()
A、123
B、87
C、150
])、109
【答案】:答案:A
解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,
53-2=125-2=1230故选A。
83、某人租下一店面准备卖服装,房租每月1万元,重新装修花费10
万元。从租下店面到开始营业花费3个月时间。开始营业后第一个月,
扣除所有费用后的纯利润为3万元。如每月纯利润都比上月增加2000
元而成本不变,问该店在租下店面后第几个月内收回投资?()
A、7
B、8
C、9
D、10
【答案】:答案:A
解析:由题意可得租下店面前3个月成本为1X3+10=13(万元),租下
店面第4个月开始营业,营业后各月获得的纯利润构成首项为3万元、
公差为0.2万元的等差数列:3万元、3.2万元、3.4万元、3.6万元。
由3+3・2+3・4+3・6=13.2>13,即第7个月收回投资。故选A。
84、3,30,129,348,()
A、532
B、621
C、656
D、735
【答案】:答案:D
解析:3=13+2、30=33+3、129=53+4、348=73+5,其中底数1、3、5、7
构成连续的奇数列,另一部分2、3、4、5是连续的自然数,即所填数
字为93+6=735。故选D。
85、4,8,28,216,()
A、6020
B、2160
C、4200
D、4124
【答案】:答案:A
解析:4X(8-1)=28,8X(28-1)=216,即所填数字为28X(216—1)
=6020。故选A。
86、2,3,6,15,()
A、25
B、36
C、42
D、64
【答案】:答案:C
解析:相邻两项间做差。做差后得到的数为1,3,9;容易观察出这是
一个等比数列,所以做差数列的下一项为27,则答案为15+27=42。故
选Co
87、1,3,2,6,11,19,()
A、24
B、36
C、29
D、38
【答案】:答案:B
解析:该数列为和数列,即前三项之和为第四项。故空缺处应为
6+11+19=36。故选B。
88、某饮料店有纯果汁(即浓度为100%)10千克,浓度为30%的浓缩还
原果汁20千克。若取纯果汁、浓缩还原果汁各10千克倒入10千克纯
净水中,再倒入10千克的浓缩还原果汁,则得到的果汁浓度为多少。
()
A、40%
B、37.5%
C、35%
D、30%
【答案】:答案:A
解析:根据题干可得,一共倒入纯果汁(即浓度为100%)10千克,纯净
水10千克,浓度为30%的浓缩还原果汁20千克。可知最终溶液的量为
10+10+20=40(千克),最终溶质为10+20X30%=16(千克)。则最终果汁
浓度=16+40>100%;40%。故选A。
89、某快速反应部队运送救灾物资到灾区。飞机原计划每分钟飞行12
千米,由于灾情危急,飞行速度提高到每分钟15千米,结果比原计划
提前30分钟到达灾区,则机场到灾区的距离是多少千米?()
A、1600
B、1800
C、2050
D、2250
【答案】:答案:B
解析:设机场到灾区的距离为x,由每分钟飞行12千米可知,原飞行
时间为;由每分钟15千米可知,现飞行时间为。根据比原计划提前30
分钟,可得,解得x=1800(千米)。故选B。
90、119,83,36,47,()
A、-37
B、-11
C、11
D、37
【答案】:答案:B
解析:119=83+36,83=36+47,即所填数字为36-47=-11。故选B。
91、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多
少?()
A、256
B、486
C、556
D、376
【答案】:答案:B
解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把
大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2
与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆
分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使
加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不
如将它换成2个3。因为2X2X2=8,而3X3=9。故拆分出的自然数中,
至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,
其乘积最大,最大值为243X2=486。故选
92、甲、乙两人在一条400米的环形跑道二从相距200米的位置出发,
同向匀速跑步。当甲第三次追上乙的时候,乙跑了2000米。问甲的速
度是乙的多少倍?()
A、1.2
B、1.5
C、1.6
D、2.0
【答案】:答案:B
解析:环形同点同向出发每追上一次,甲比乙多跑一圈。第一次由于
是不同起点,甲比乙多跑原来的差距200米;之后两次追上都多跑400
米,甲一共比乙多跑200+400X2=1000(米):,乙跑了2000米,甲跑了
3000米,时间相同,则速度比与路程比也相同,可知甲的速度是乙的
3000+2000=1.5倍。故选B。
93、钢铁厂某年总产量的1/6为型钢类,1/7为钢板类,钢管类的产量
正好是型钢和钢板产量之差的14倍,而钢丝的产量正好是钢管和型钢
产量之和的一半,而其它产品共为3万吨。问该钢铁厂当年的产量为
多少万吨?()
A、48
B、42
C、36
D、28
【答案】:答案:D
解析:假设总产量%,则型钢类产量为,钢板类产量为,钢管类为,
钢丝的产量为,贝L解得万吨,则总产量万吨。故正确答案为D。
94、在一次知识竞赛中,甲、乙两单位平均分为85分,甲单位得分比
乙单位高10分,则乙单位得分为()分。
A、88
B、85
C、80
I)、75
【答案】:答案:C
解析:根据“甲、乙平均分为85分”,可得总分为85X2=170(分)。
设乙得分为X,那么甲得分为x+10,由题意有x+x+10=170,解得x=80。
故选C。
95、一个四边形广场,它的四边长分别是60米、72米、96米、84米,
现在四边上植树,四角需种树,而且每两棵树的间隔相等,那么,至
少要种多少棵树?()
A、22
B、25
C、26
D、30
【答案】:答案:C
解析:根据四角需种树,且每两棵树的间隔相等可知,间隔距离应为
四边边长的公约数;要使棵树至少,则间隔距离要尽量最大,公约数
最大为12(60、72、96、84的最大公约数)。故棵数=段数=长度+间
距=(60+72+84+96)+12=26(棵)。故选C。
96、团体操表演中,编号为1~100的学生按顺序排成一列纵队,编号
为1的学生拿着红、黄、蓝三种颜色的旗帜,以后每隔2个学生有1
人拿红旗,每隔3个学生有1人拿蓝旗,每隔6个学生有1人拿黄旗。
问所有学生中有多少人拿两种颜色以上的旗帜?()
A、13
B、14
C、15
D、16
【答案】:答案:B
解析:每隔n个人意为每(n+1)个人,则拿红、蓝、黄旗的周期分别为
3、4、7o除编号为1的学生外还剩99人,同时拿红、蓝旗的编号为
12(3和4的公倍数)的倍数,994-12=8.25,有8人;同理,同时拿红、
黄旗的编号为21(3和7的公倍数)的倍数,994-21=4.7,有4人;同时
拿蓝、黄旗的编号为28(4和7的公倍数)的倍数,994-28=3.5,有3
人;同时拿红蓝黄旗的编号为84(3、4和7的公倍数)的倍数,
994-84=1.1,有1人。拿两种颜色以上的旗帜共有8+4+3+1-
2X1=14(人)。故选B。
97、1,1,2,6,24,()
A、11
B、50
C、80
D、120
【答案】:答案:D
解析:依次将相邻两个数中后一个数除以前一个数得1,2,3,4,为
连续自然数列,即所填数字为24X5=120。故选D。
98、8,10,14,18,()
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8X2-6=10;10X2-6=14;14X2-10=18;18X2-10=26o故选C。
99、2,5,9,19,37,75,()
A、140
B、142
C、146
D、149
【答案】:答案:C
解析:方法一:2X2+1=5,5X2—1=9,9X2+1=19,19X2-1=
37,37X2+1=75,奇数项,每项乘以2加上1等于后一项;偶数项,
每项乘以2减去1等于后一项,即所填数字为75X2—1=149。方法二:
2X2+5=9,5X2+9=19,9X2+19=37,19X2+37=75,第三项
=第一项X2+第二项,即所填数字为37X2+75=149。故选C。
100、某制衣厂接受一批服装订货任务,按计划天数进行生产,如昊每
天平均生产20套服装,就比订货任务少生产100套;如果每天生产23
套服装,就可超过订货任务20套。那么,这批服装的订货任务是多少
套?()
A、760
B、1120
C、900
D、850
【答案】:答案:C
解析:由题意每天生产多出3套,总共就会多生产出120,那么计划的
天数为40天,所以这批服装为20X40+100=900(套)。故选C。
101、1,8,9,4,(),1/6
A、3
B、2
C、1
D、1/3
【答案】:答案:C
解析:1=14,8=23,9=32,4=41,1=50,1/6=6(-l)o故选C。
102、12,27,72,(),612
A、108
B、188
C、207
D、256
【答案】:答案:C
解析:(第一项-3)><3=第二项,(72-3)X3=(207),(207-3)X3=612。
故选C。
103、甲、乙和丙三种不同浓度、不同规格的酒精溶液,每瓶重量分别
为3公斤、7公斤和9公斤,如果将甲乙各一瓶、甲丙各一瓶和乙丙各
一瓶分别混合,得到的酒精浓度分别为50%,50%和60%。如果将三种
酒精合各一瓶混合,得到的酒精中要加入多少公斤纯净水后,其浓度
正好是50%?()
A、1
B、1.3
C、1.6
D、1.9
【答案】:答案:C
解析:甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,相当于两瓶
甲、两瓶乙、两瓶丙混合,前两种浓度都是50乐所以只需要加入适量
水使得乙丙混合浓度由60%变为50%即可。设加水x,可将浓度为60%
的酒精溶液溶度变为50%,即,解得x=3.2(公斤)。此时甲乙,甲丙和
乙丙溶液各一瓶混合后浓度必然为50%。若甲、乙和丙各一瓶混合时浓
度仍然为50%,则需加水为(公斤)。故选C。
104、25与一个三位数相乘个位是0,与这个三位数相加有且只有一次
进位,像这样的三位数总共有多少个?()
A、48
B、126
C、174
D、180
【答案】:答案:C
解析:因为25与一个三位数相乘个位是0,所以这个三位数个位上的
数是0、2、4、6、8O又因为与这个三位数相加有且只有一次进位,所
以当个位是0、2、4时,十位必须是8或9,百位是1-8八个数都可以,
这种情况有48(8乘2乘3等于48)个数满足条件;当个位是6或8时,
十位可以是0、1、2、3、4、5、6七个数,百位是1-9九个数,这种
情况有126(9乘7乘2等于126)个数满足条件;终上所述一共有
174(48+126=174)个,即:像这样的三位数总共有174个°故选以
105、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次将相邻而个数中后一个数减去前一个数得2,-3,2,-2,2,
为奇数项是2偶数项为公差为1的等差数列,即所填数字为6+(-1)=5。
故选B。
106、一艘轮船从甲地到乙地每小时航行30千米,然后按原路返回,
若想往返的平均速度为每小时40千米,则返回时每小时航行()千
米。
A、80
B、75
C、60
【)、96
【答案】:答案:C
解析:设甲乙两地的距离为1,则轮船从甲地到乙地所用的时间为
1/30,如果往返的平均速度为40千米,则往返一次所用的时间为2/40,
那么从乙地返回甲地所用时间为2/40-1/30二1/60,所以返回时的速度
为每小时1/(1/60)=60千米。故选小
107、1,1,2,8,64,()
A、1024
B、1280
C、512
D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年安全生产月电气测试试题及答案
- 工业机器人系统操作员(三级)职业鉴定理论考试题及答案(新版)
- 2025年人工智能应用技术考试试卷及答案
- 建设工程施工合同纠纷要素式起诉状模板要素清晰无混淆
- 2026年动物园管理提升
- 2026 年无子女离婚协议书正规模板
- 2026 年离婚协议书正式合规版
- 统编版九年级上册历史期末质量监测试卷(含答案)
- 食堂反食品浪费管理制度
- 环卫考核培训
- JGJ256-2011 钢筋锚固板应用技术规程
- 上海建桥学院简介招生宣传
- 《智慧教育黑板技术规范》
- 《电力建设安全工作规程》-第1部分火力发电厂
- 歌曲《我会等》歌词
- 八年级物理上册期末测试试卷-附带答案
- 小学英语五年级上册Unit 5 Part B Let's talk 教学设计
- 老年痴呆科普课件整理
- 学生校服供应服务实施方案
- GB/T 22900-2022科学技术研究项目评价通则
- 自动控制系统的类型和组成
评论
0/150
提交评论