版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省周至县第五中学2026届数学高一上期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若两条平行直线与之间的距离是,则m+n=A.0 B.1C.-2 D.-12.边长为的正四面体的表面积是A. B.C. D.3.已知定义在R上的函数满足:对任意,则A. B.0C.1 D.34.函数的定义域为()A.(-∞,4) B.[4,+∞)C.(-∞,4] D.(-∞,1)∪(1,4]5.已知且,则()A.有最小值 B.有最大值C.有最小值 D.有最大值6.已知平面向量,,若,则实数值为()A.0 B.-3C.1 D.-17.函数的定义域是()A. B.C.R D.8.圆的半径和圆心坐标分别为A. B.C. D.9.函数的单调递增区间为()A., B.,C., D.,10.命题“,”的否定为()A., B.,C, D.,二、填空题:本大题共6小题,每小题5分,共30分。11.表示一位骑自行车和一位骑摩托车的旅行者在相距80km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3h,晚到1h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5h后追上了骑自行车者;④骑摩托车者在出发1.5h后与骑自行车者速度一样其中,正确信息的序号是________12.已知函数,若关于x的方程有两个不同的实根,则实数m的取值范围是______13.下面四个命题:①定义域上单调递增;②若锐角,满足,则;③是定义在上的偶函数,且在上是增函数,若,则;④函数的一个对称中心是;其中真命题的序号为______.14.已知函数的最大值为3,最小值为1,则函数的值域为_________.15.设函数的图象关于y轴对称,且其定义域为,则函数在上的值域为________.16.如图,若角的终边与单位圆交于点,则________,________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为定义在上的奇函数,当时,函数解析式为.(1)求的值,并求出在上的解析式;(2)求在上的最值18.(1)求a值以及函数的定义域;(2)求函数在区间上的最小值;(3)求函数的单调递增区间19.已知函数(1)求的最小正周期;(2)若,,求的值20.已知tanα=,求下列各式的值(1)+;(2);(3)sin2α-2sinαcosα+4cos2α.21.已知定义在上的奇函数,当时,.(1)求函数在上的解析式;(2)在给出的直角坐标系中作出的图像,并写出函数的单调区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据直线平行得到,根据两直线的距离公式得到,得到答案.【详解】由,得,解得,即直线,两直线之间的距离为,解得(舍去),所以故答案选C.【点睛】本题考查了直线平行,两平行直线之间的距离,意在考查学生的计算能力.2、D【解析】∵边长为a的正四面体的表面为4个边长为a正三角形,∴表面积为:4×a=a2,故选D3、B【解析】,且,又,,由此可得,,是周期为的函数,,,故选B.考点:函数的奇偶性,周期性,对称性,是对函数的基本性质的考察.【易错点晴】函数满足则函数关于中心对称,,则函数关于轴对称,常用结论:若在上的函数满足,则函数以为周期.本题中,利用此结论可得周期为,进而,需要回到本题利用题干条件赋值即可.4、D【解析】根据函数式的性质可得,即可得定义域;【详解】根据的解析式,有:解之得:且;故选:D【点睛】本题考查了具体函数定义域的求法,属于简单题;5、A【解析】根据,变形为,再利用不等式的基本性质得到,进而得到,然后由,利用基本不等式求解.【详解】因为,所以,所以,所以,所以,所以,当且仅当时取等号,故选:A.【点睛】思路点睛:本题思路是利用分离常数法转化为,再由,利用不等式的性质构造,再利用基本不等式求解.6、C【解析】根据,由求解.【详解】因为向量,,且,所以,解得,故选:C.7、A【解析】显然这个问题需要求交集.【详解】对于:,;对于:,;故答案为:A.8、D【解析】半径和圆心坐标分别为,选D9、C【解析】利用正切函数的性质求解.【详解】解:令,解得,所以函数的单调递增区间为,,故选:C10、B【解析】根据特称命题的否定为全称命题可得.【详解】根据特称命题的否定为全称命题,可得命题“,”的否定为“,”故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、①②③【解析】看时间轴易知①正确;骑摩托车者行驶的路程与时间的函数图象是直线,所以是匀速运动,而骑自行车者行驶的路程与时间的函数图象是折线,所以是变速运动,因此②正确;两条曲线的交点的横坐标对应着4.5,故③正确,④错误故答案为①②③.点睛:研究函数问题离不开函数图象,函数图象反映了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题、寻找解决问题的方法12、【解析】由题意在同一个坐标系中作出两个函数的图象,图象交点的个数即为方程根的个数,由图象可得答案【详解】解:由题意作出函数的图象,关于x的方程有两个不同的实根等价于函数与有两个不同的公共点,由图象可知当时,满足题意,故答案为【点睛】本题考查方程根的个数,数形结合是解决问题的关键,属基础题13、②③④【解析】由正切函数的单调性,可以判断①真假;根据正弦函数的单调性,结合诱导公式,可以判断②的真假;根据函数奇偶性与单调性的综合应用,可以判断③的真假;根据正弦型函数的对称性,我们可以判断④的真假,进而得到答案【详解】解:由正切函数的单调性可得①“在定义域上单调递增”为假命题;若锐角、满足,即,即,则,故②为真命题;若是定义在上的偶函数,且在上是增函数,则函数在上为减函数,若,则,则,故③为真命题;由函数则当时,故可得是函数的一个对称中心,故④为真命题;故答案为:②③④【点睛】本题考查的知识点是命题的真假判断与应用,函数单调性的性质,偶函数,正弦函数的对称性,是对函数性质的综合考查,熟练掌握基本初等函数的性质是解答本题的关键14、【解析】根据三角函数性质,列方程求出,得到,进而得到,利用换元法,即可求出的值域【详解】根据三角函数性质,的最大值为,最小值为,解得,则函数,则函数,,令,则,令,由得,,所以,的值域为故答案为:【点睛】关键点睛:解题关键在于求出后,利用换元法得出,,进而求出的范围,即可求出所求函数的值域,难度属于中档题15、【解析】∵函数的图象关于y轴对称,且其定义域为∴,即,且为偶函数∴,即∴∴函数在上单调递增∴,∴函数在上的值域为故答案为点睛:此题主要考查函数二次函数图象对称的性质以及二次函数的值域的求法,求解的关键是熟练掌握二次函数的性质,本题理解对称性很关键16、①.##0.8②.【解析】根据单位圆中的勾股定理和点所在象限求出,然后根据三角函数的定义求出即可【详解】如图所示,点位于第一象限,则有:,且解得:(其中)故答案为:;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)在上的解析式为;(2)函数在[0,1]上的最大与最小值分别为0,-2.【解析】(1)根据函数的奇偶性可知,代入即可求值;(2)利用换元得出新的函数,再结合新的函数解析式求最值即可.【详解】(1)为定义在[-1,1]上的奇函数,且在处有意义,即,设,则又,所以,在上的解析式为(2)当,,∴设则当t=1时,取最大值,最大值为1-1=0.当t=0时,取最小值为-2.所以,函数在[0,1]上的最大与最小值分别为0,-2.18、(1),;(2);(3)﹒【解析】(1)由f(1)=-2解得a,由1+x>0且3-x>0解得定义域;(2)化简f(x)解析式,根据x范围求出真数部分范围,即可求其最值;(3)根据复合函数单调性判断方法“同增异减”即可﹒【小问1详解】,解得;故,由,解得:,故函数的定义域是;【小问2详解】由(1)得,令得,则原函数为,由于该函数在上单调递减,∴,因此,函数在区间上的最小值是;【小问3详解】由(1)得:,令的对称轴是,故在递增,在递减,∴在递增,在递减,故函数单调递增区间为19、(1)(2)【解析】(1)根据二倍角的正、余弦公式和辅助角公式化简计算可得,结合公式计算即可;(2)根据同角三角函数的基本关系和角的范围求出,根据和两角和的正弦公式直接计算即可.【小问1详解】最小正周期【小问2详解】,因为,,若,则,不合题意,又,所以,因为,所以,所以20、(1)(2)(3)【解析】(1)+=+=+=.(2)===.(3)sin2α-2sin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年智能车载蓝牙播放器项目营销方案
- 环境现场执法培训课件
- 上半年企业安全工作总结
- 医院危重孕产妇救治中心2026年度工作总结
- 年终工作总结汇报
- 土方开挖清运施工方案满足扬尘治理要求
- 2025年普通脚手架工考试题及答案
- 2025年重症医学科n2护士分层综合考核试卷及答案
- 求职酒吧营销员面试技巧
- 建设工程施工合同纠纷要素式起诉状模板无删减完整版
- JGJT46-2024《施工现场临时用电安全技术标准》条文解读
- 电梯安装施工合同
- DBJ41-T 263-2022 城市房屋建筑和市政基础设施工程及道路扬尘污染防治差异化评价标准 河南省工程建设标准(住建厅版)
- 水工钢结构平面钢闸门设计计算书
- DL-T5024-2020电力工程地基处理技术规程
- 耐高温铝电解电容器项目计划书
- 小学四年级语文上册期末测试卷(可打印)
- 《肺癌的诊断与治疗》课件
- 人教版三年级上册数学应用题100题及答案
- 防污闪涂料施工技术措施
- 环卫清扫保洁、垃圾清运及绿化服务投标方案(技术标 )
评论
0/150
提交评论