版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届通化市重点中学数学高一上期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在内,不等式解集是()A. B.C. D.2.已知函数f(x)=3x A. B.C. D.3.下列关系中,正确的是()A. B.C D.4.已知,则的周期为()A. B.C.1 D.25.的弧度数是()A. B.C. D.6.“”是“为第二象限角”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知,大小关系正确的是A. B.C. D.8.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的表面积为A. B.C. D.10.已知函数的图象关于直线对称,则=A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形周长为4,圆心角为,则扇形面积为__________.12.若函数是定义在上的偶函数,当时,.则当时,______,若,则实数的取值范围是_______.13.已知函数,若函数图象恒在函数图象的下方,则实数的取值范围是__________.14.若函数(其中)在区间上不单调,则的取值范围为__________.15.已知函数的图象(且)恒过定点P,则点P的坐标是______,函数的单调递增区间是__________.16.函数的定义域是______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其中向量,,.(1)求函数的最大值;(2)求函数的单调递增区间.18.已知函数.(1)若函数的定义域为,求集合;(2)若集合,求.19.已知集合,.(1)求;(2)求.20.已知函数,.(1)求函数的最小正周期和单调递减区间;(2)用括号中的正确条件填空.函数的图象可以用下面的方法得到:先将正弦曲线,向___________(左,右)平移___________(,)个单位长度;在纵坐标不变的条件下再把所得曲线上各点的横坐标变为原来的___________(,2)倍,再在横坐标不变的条件下把所得曲线上各点的纵坐标变为原来的___________(,2)倍,最后再把所得曲线向___________(上,下)平移___________(1,2)个单位长度.21.求同时满足条件:①与轴相切,②圆心在直线上,③直线被截得的弦长为的圆的方程
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据正弦函数的图象和性质,即可得到结论【详解】解:在[0,2π]内,若sinx,则x,即不等式的解集为(,),故选:C【点睛】本题主要考查利用三角函数的图象与性质解不等式,考查数形结合的思想,属于基础题2、B【解析】根据对数的运算性质求出,再根据指数幂的运算求出即可.【详解】由题意知,,则,所以.故选:B3、B【解析】根据对数函数的性质判断A,根据指数函数的性质判断B,根据正弦函数的性质及诱导公式判断C,根据余弦函数的性质及诱导公式判断D;【详解】解:对于A:因为,,,故A错误;对于B:因为在定义域上单调递减,因为,所以,又,,因为在上单调递增,所以,所以,所以,故B正确;对于C:因为在上单调递减,因为,所以,又,所以,故C错误;对于D:因为在上单调递减,又,所以,又,所以,故D错误;故选:B4、A【解析】利用两角和的正弦公式化简函数,代入周期计算公式即可求得周期.【详解】,周期为:故选:A【点睛】本题考查两角和的正弦公式,三角函数的最小正周期,属于基础题.5、C【解析】弧度,弧度,则弧度弧度,故选C.6、B【解析】利用辅助角公式及正弦函数的性质解三角形不等式,再根据集合的包含关系判断充分条件、必要条件即可;【详解】解:由,即,所以,,解得,,即,又第二象限角为,因为真包含于,所以“”是“为第二象限角”的必要不充分条件;故选:B7、C【解析】利用“”分段法比较出三者的大小关系.【详解】由于,,,即,故选C.【点睛】本小题主要考查指数式、对数式比较大小,属于基础题.8、B【解析】根据充分条件、必要条件的概念判断即可.【详解】若,则成立,即必要性成立,反之若,则不成立,所以“”是“”的必要不充分条件.故选:B.9、D【解析】由三视图知几何体为圆柱挖去一个圆锥所得的组合体,且圆锥与圆柱的底面直径都为4,高为2,则圆锥的母线长为,∴该几何体的表面积S=π×22+2π×2×2+π×2×2=(12+4)π,故选D.10、C【解析】因为函数的图象关于直线对称,所以,即,因此,选C.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】利用扇形的弧长公式求半径,再由扇形面积公式求其面积即可.【详解】设扇形的半径为,则,可得,而扇形的弧长为,所以扇形面积为.故答案为:1.12、①.②.【解析】根据给定条件利用偶函数的定义即可求出时解析式;再借助函数在单调性即可求解作答.【详解】因函数是定义在上的偶函数,且当时,,则当时,,,所以当时,;依题意,在上单调递增,则,解得,所以实数的取值范围是.故答案为:;13、【解析】作出和时,两个函数图象,结合图象分析可得结果.【详解】当时,,,两个函数的图象如图:当时,,,两个函数的图象如图:要使函数的图象恒在函数图象的下方,由图可知,,故答案为:.14、【解析】化简f(x),结合正弦函数单调性即可求ω取值范围.【详解】,x∈,①ω>0时,ωx∈,f(x)在不单调,则,则;②ω<0时,ωx∈,f(x)在不单调,则,则;综上,ω的取值范围是.故答案为:.15、①.②.【解析】令,求得,即可得到函数的图象恒过定点;令,求得函数的定义域为,利用二次函数的性质,结合复合函数的单调性的判定方法,即可求解.【详解】由题意,函数(且),令,即,可得,即函数的图象恒过定点,令,即,解得,即函数的定义域为,又由函数的图象开口向下,对称轴的方程为,所以函数在上单调递增,在上单调递减,结合复合函数的单调性的判定方法,可得函数的递增区间为.故答案为:;.16、【解析】由题意可得,从而可得答案.【详解】函数的定义域满足即,所以函数的定义域为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、见解析【解析】【试题分析】(1)利用向量的运算,求出的表达式并利用辅助角公式化简,由此求得函数的最大值.(2)将(1)中求得的角代入正弦函数的递增区间,解出的取值范围,即为函数的递增区间.【试题解析】(Ⅰ),当时,有最大值.(Ⅱ)令,得函数的单调递增区间为【点睛】本题主要考查向量的数量积运算,考查三角函数辅助角公式,考查三角函数最大最小值的求法,考查三角函数单调性即三角函数图像与性质.首先根据向量数量积的运算,化简函数,这是题目中向量坐标运算的运用,化简三角函数要为次数是一次的形如的形式.18、(1);(2).【解析】⑴满足函数有意义的条件为,求出结果即可;⑵根据已知条件及并集的运算法则可得结果;解析:(1)要使函数有意义,则要,得.所以.(2)∵,∴19、(1)(2)【解析】(1)分别求两个集合,再求交集;(2)先求,再求.【小问1详解】,解得:,即,,解得:,即,;【小问2详解】,.20、(1),(2)左,,,2,上,1【解析】(1)根据降幂公式、二倍角的正弦公式及两角和的正弦公式化简,由正弦型三角函数的周期公式求周期,由正弦型函数的单调性求单调区间;(2)根据三角函数的图象变换过程求解即可.【小问1详解】,∴函数的最小正周期.由,得:,,∴的单调递减区间为,.【小问2详解】将的图象向左平移个单位,得到的图象,在纵坐标不变的条件下再把所得曲线上各点的横坐标变为原来的倍,得到的图象,再在横坐标不变的条件下把所得曲线上各点的纵坐标变为原来的2倍,得到的图象,最后再把所得曲线向上平移1个单位长度,即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年不同类型桥梁的设计方法
- 2025年高职机械制造(液压传动技术)试题及答案
- 2025年高职建筑设计(建筑创意设计)试题及答案
- 2025年大学二年级(医疗器械与装备工程)装备应用阶段测试题及答案
- 2025年中职烟草栽培与加工(烟草加工工艺)试题及答案
- 2025年大学第二学年(酿酒技术)酿酒工艺模拟测试试题及答案
- 2025年高职第一学年(制冷与空调技术)中央空调安装调试阶段测试试题及答案
- 2025年大学新能源发电工程(光伏运维)试题及答案
- 2025年中职建筑施工技术(混凝土施工)试题及答案
- 2025年大学制浆技术(制浆工艺)试题及答案
- 中国药物性肝损伤诊治指南(2024年版)解读
- 基层党建知识测试题及答案
- DG-TJ08-2021-2025 干混砌筑砂浆抗压强度现场检测技术标准
- 鼻窦炎的护理讲课课件
- 肠系膜脂膜炎CT诊断
- 体外膜肺氧合技术ECMO培训课件
- 老年医院重点专科建设方案
- 银行解封协议书模板
- 超星尔雅学习通《学术规范与学术伦理(华东师范大学)》2025章节测试附答案
- GB 17440-2025粮食加工、储运系统粉尘防爆安全规范
- 《绿色农产品认证》课件
评论
0/150
提交评论