版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河北省承德第一中学高一上数学期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,则sin=A. B.C. D.2.若函数的图象(部分)如图所示,则的解析式为()A. B.C. D.3.已知定义域为的函数满足:,且,当时,,则等于A. B.C.2 D.44.已知角顶点与原点重合,始边与轴的正半轴重合,点在角的终边上,则()A. B.C. D.5.已知函数是偶函数,且,则()A. B.0C.2 D.46.如图,正方体的棱长为1,动点在线上,,分别是,的中点,则下列结论中错误的是()A. B.平面C.三棱锥的体积为定值 D.存在点,使得平面平面7.已知则当最小时的值时A.﹣3 B.3C.﹣1 D.18.函数f(x)=lnx+3x-7的零点所在的区间是()A. B.C. D.9.在数学史上,一般认为对数的发明者是苏格兰数学家——纳皮尔(Napier,1550-1617年).在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间.纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法.让我们来看看下面这个例子:
12345678…1415…272829248163264128256…1638432768…134217728268435356536870912这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂.如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的和来实现.比如,计算64×256的值,就可以先查第一行的对应数字:64对应6,256对应8,然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384,按照这样的方法计算:16384×32768=A.134217728 B.268435356C.536870912 D.51376580210.对于函数,下列说法正确的是A.函数图象关于点对称B.函数图象关于直线对称C.将它的图象向左平移个单位,得到的图象D.将它的图象上各点的横坐标缩小为原来的倍,得到的图象二、填空题:本大题共6小题,每小题5分,共30分。11.若实数x,y满足,且,则的最小值为___________.12.A是锐二面角α-l-β的α内一点,AB⊥β于点B,AB=,A到l的距离为2,则二面角α-l-β的平面角大小为________.13.若关于的方程只有一个实根,则实数的取值范围是______.14.已知函数,若存在,使得f()=g(),则实数a的取值范围为___15.幂函数的图像经过点,则的值为____16.下列命题中正确的是__________.(填上所有正确命题的序号)①若,,则;②若,,则;③若,,则;④若,,,,则三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.黄山市某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量(单位:千克)与施用肥料(单位:千克)满足关系:.肥料成本投入为元,其它成本投入(如培育管理,施肥等人工费)元.已知这种水果的市场售价为15元/千克,且销路畅通供不应求,记该水果树的单株利润为(单位:元).(1)求的函数关系式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?18.已知函数过点(1)求的解析式;(2)求的值;(3)判断在区间上的单调性,并用定义证明19.已知函数,(Ⅰ)求的最小正周期及单调递增区间;(Ⅱ)求在区间上的最大值和最小值20.已知四棱锥P-ABCD的体积为,其三视图如图所示,其中正视图为等腰三角形,侧视图为直角三角形,俯视图是直角梯形.(1)求正视图的面积;(2)求四棱锥P-ABCD的侧面积.21.计算或化简:(1);(2)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】因为,,所以sin==,故选B考点:本题主要考查三角函数倍半公式的应用点评:简单题,注意角的范围2、A【解析】根据正弦型函数最小正周期公式,结合代入法进行求解即可.【详解】设函数的最小正周期为,因为,所以由图象可知:,即,又因为函数过,所以有,因为,所以令,得,即,故选:A3、D【解析】由得,又由得函数为偶函数,所以选D4、D【解析】先根据三角函数的定义求出,然后采用弦化切,代入计算即可【详解】因为点在角的终边上,所以故选:D5、D【解析】由偶函数定义可得,代入可求得结果.【详解】为偶函数,,,故选:D6、D【解析】对A,根据中位线的性质判定即可.对B,利用平面几何方法证明,再证明平面即可.对C,根据三棱锥以为底,且同底高不变,故体积不变判定即可.对D,根据与平面有交点判定即可.【详解】在A中,因为分别是的中点,所以,故A正确;在B中,因为,,故,故.故,又有,所以平面,故B正确;在C中,三棱锥以面为底,则高是定值,所以三棱锥的体积为定值,故C正确.在D中,与平面有交点,所以不存在点,使得平面平面,故D错误.故选:D.【点睛】方法点睛:本题考查空间点线面位置关系,考查棱锥的体积,考查线面垂直的判定定理的应用,判断线面垂直的方法主要有:
线面垂直的判定定理,直线与平面内的两条相交直线垂直;
面面垂直的性质定理,若两平面互相垂直,则在一个平面内垂直于交线的垂直于另一个平面;
线面垂直的性质定理,两条平行线中有一条与平面垂直,则另一条也与平面垂直;
面面平行的性质定理,直线垂直于两平行平面之一,必然垂直于另一个平面7、B【解析】由题目已知可得:当时,的值最小故选8、C【解析】由函数的解析式求得f(2)f(3)<0,再根据根据函数零点的判定定理可得函数f(x)的零点所在的区间【详解】∵函数f(x)=lnx+3x-7在其定义域上单调递增,∴f(2)=ln2+2×3-7=ln2-1<0,f(3)=ln3+9-7=ln3+2>0,∴f(2)f(3)<0.根据函数零点的判定定理可得函数f(x)的零点所在的区间是(2,3),故选C【点睛】本题主要考查求函数的值,函数零点的判定定理,属于基础题9、C【解析】先找到16384与32768在第一行中的对应数字,进行相加运算,再找和对应第二行中的数字即可.【详解】由已知可知,要计算16384×32768,先查第一行的对应数字:16384对应14,32768对应15,然后再把第一行中的对应数字加起来:14+15=29,对应第二行中的536870912,所以有:16384×32768=536870912,故选C.【点睛】本题考查了指数运算的另外一种算法,关键是认真审题,理解题意,属于简单题.10、B【解析】,所以点不是对称中心,对称中心需要满足整体角等于,,A错.,所以直线是对称轴,对称轴需要满足整体角等于,,B对.将函数向左平移个单位,得到的图像,C错.将它的图像上各点的横坐标缩小为原来的倍,得到的图像,D错,选B.(1)对于和来说,对称中心与零点相联系,对称轴与最值点联系.的图象有无穷多条对称轴,可由方程解出;它还有无穷多个对称中心,它们是图象与轴的交点,可由,解得,即其对称中心为(2)三角函数图像平移:路径①:先向左(φ>0)或向右(φ<0)平移个单位长度,得到函数y=sin(x+φ)的图象;然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数y=sin(ωx+φ)的图象;最后把曲线上各点的纵坐标变为原来的A(横坐标不变),这时的曲线就是y=Asin(ωx+φ)的图象路径②:先将曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数y=sinωx的图象;然后把曲线向左(φ>0)或向右(φ<0)平移个单位长度,得到函数y=sin(ωx+φ)的图象;最后把曲线上各点的纵坐标变为原来的A倍(横坐标不变),这时的曲线就是y=Asin(ωx+φ)的图象二、填空题:本大题共6小题,每小题5分,共30分。11、8【解析】由给定条件可得,再变形配凑借助均值不等式计算作答.【详解】由得:,又实数x,y满足,则,当且仅当,即时取“=”,由解得:,所以当时,取最小值8.故答案为:8【点睛】思路点睛:在运用基本不等式时,要特别注意“拆”、“拼”、“凑”等技巧,使用其满足基本不等式的“一正”、“二定”、“三相等”的条件.12、【解析】如图,过点B作与,连,则有平面,从而得,所以即为二面角的平面角在中,,所以,所以锐角即二面角的平面角的大小为答案:点睛:作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角,然后通过解三角形的方法求得角,解题时要注意所求角的范围13、【解析】把关于的方程只有一个实根,转化为曲线与直线的图象有且只有一个交点,在同一坐标系内作出曲线与直线的图象,结合图象,即可求解.【详解】由题意,关于方程只有一个实根,转化为曲线与直线的图象有且只有一个交点,在同一坐标系内作出曲线与直线的图象,如图所示,结合图象可知,当直线介于和之间的直线或与重合的直线符合题意,又由直线在轴上的截距分别为,所以实数的取值范围是.故答案为.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中把方程的解转化为直线与曲线的图象的交点个数,结合图象求解是解答的关键,着重考查了转化思想,以及数形结合思想的应用,属于基础题.14、【解析】先求出的值域,再求出的值域,利用和得到不等式组求解即可.【详解】因为,所以,故,即因为,依题意得,解得故答案为:.15、2【解析】因为幂函数,因此可知f()=216、③【解析】对于①,若,,则与可能异面、平行,故①错误;对于②,若,,则与可能平行、相交,故②错误;对于③,若,,则根据线面垂直的性质,可知,故③正确;对于④,根据面面平行的判定定理可知,还需添加相交,故④错误,故答案为③.【方法点晴】本题主要考查线面平行的判定与性质、面面平行的性质及线面垂直的性质,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)f(2)当施用肥料为5千克时,该水果树的单株利润最大,最大利润是750元【解析】(1)用销售收入减去成本求得的函数关系式.(2)结合二次函数的性质、基本不等式来求得最大利润以及此时对应的施肥量.小问1详解】由已知得:,故fx【小问2详解】若,则,此时,对称轴为,故有最大值为.若,则,当且仅当,即时等号成立,此时,有最大值为,综上有,有最大值为750,∴当施用肥料为5千克时,该水果树的单株利润最大,最大利润是750元.18、(1)(2)(3)在区间上单调递增;证明见解析【解析】(1)直接将点的坐标代入函数中求出,从而可求出函数解析式,(2)直接利用解析求解即可,(3)利用单调性的定义直接证明即可【小问1详解】∵函数∫过点,∴,∴,得的解析式为:【小问2详解】【小问3详解】在区间上单调递增证明:,且,有∵,∴∴,即∴在区间上单调递增19、(Ⅰ)最小正周期是,单调递增区间是.(Ⅱ)最大值为,最小值为【解析】详解】试题分析:(Ⅰ)将函数解析式化为,可得最小正周期为;将代入正弦函数的增区间可得函数的单调递增区间是.(Ⅱ)由可得,故,从而可得函数在区间上的最大值为,最小值为试题解析:(Ⅰ),所以函数的最小正周期是,由,得,所以的单调递增区间是.(Ⅱ)当时,,所以,所以,所以在区间上的最大值为,最小值为点睛:解决三角函数综合题(1)将f(x)化为的形式;(2)构造;(3)逆用和(差)角公式得到(其中φ为辅助角);(4)利用,将看做一个整体,并结合函数的有关知识研究三角函数的性质20、(1);(2)【解析】(1)根据四棱锥的体积得PA=,进而得正视图的面积;(2)过A作AE∥CD交BC于E,连接PE,确定四个侧面积面积S△PAB,S△PAD,S△PC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026海南软件职业技术学院考核招聘二级学院院长2人笔试模拟试题及答案解析
- 2026山东事业单位统考青岛李沧区招聘32人笔试参考题库及答案解析
- 2026山东事业单位统考枣庄市峄城区招聘初级综合类岗位23人笔试备考题库及答案解析
- 隧道养护培训制度
- 培训学习奖罚制度
- 内控制度培训总结
- 民办非企业人员培训制度
- 内部治安教育培训制度
- 通讯员培训管理制度
- 社团干部培训班奖惩制度
- 2025职业健康培训测试题(+答案)
- 供货流程管控方案
- 章节复习:平行四边形(5个知识点+12大常考题型)解析版-2024-2025学年八年级数学下册(北师大版)
- 《实践论》《矛盾论》导读课件
- 中试基地运营管理制度
- 老年病康复训练治疗讲课件
- DB4201-T 617-2020 武汉市架空管线容貌管理技术规范
- 药品追溯码管理制度
- 脚手架国际化标准下的发展趋势
- 购销合同范本(塘渣)8篇
- 生鲜业务采购合同协议
评论
0/150
提交评论