版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届内蒙古包头市第二中学高二上数学期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,若,则()A.150° B.120°C.60° D.30°2.某次数学考试试卷评阅采用“双评+仲裁”的方式,规则如下:两位老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于或等于分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分.如图所示,当,,时,则()A. B.C.或 D.3.已知是抛物线上的点,F是抛物线C的焦点,若,则()A.1011 B.2020C.2021 D.20224.命题“,则”及其逆命题、否命题和逆否命题这四个命题中,真命题的个数为()A.0 B.2C.3 D.45.已知l,m是两条不同的直线,是两个不同的平面,且,则()A.若,则 B.若,则C.若,则 D.若,则6.空间四点共面,但任意三点不共线,若为该平面外一点且,则实数的值为()A. B.C. D.7.已知,则()A. B.C. D.8.杨辉三角是二项式系数在三角形中的一种几何排列,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中就有出现.在欧洲,帕斯卡(1623~1662)在1654年发现这一规律,比杨辉要迟了393年.如图所示,在“杨辉三角”中,从1开始箭头所指的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,…,则在该数列中,第37项是A.153 B.171C.190 D.2109.已知,则下列不等式一定成立的是()A. B.C. D.10.已知,,则()A. B.C. D.11.若直线与直线平行,则()A. B.C. D.12.一个盒子里有3个分别标有号码为1,2,3小球,每次取出一个,记下它的标号后再放回盒子中,共取2次,则在两次取得小球中,标号最大值是3的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设数列满足且,则________.数列的通项=________.14.已知,,,,使得成立,则实数a的取值范围是___________.15.设实数、满足约束条件,则的最小值为___________.16.已知圆锥的母线长为cm,其侧面展开图是一个半圆,则底面圆的半径为____cm.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知满足,.(1)求证:是等差数列,求的通项公式;(2)若,的前项和是,求证:.18.(12分)已知等差数列满足:成等差数列,成等比数列.(1)求的通项公式:(2)在数列的每相邻两项与间插入个,使它们和原数列的项构成一个新数列,数列的前项和记为,求及.19.(12分)已知公差不为0的等差数列的前项和为,且,,成等比数列,且.(1)求的通项公式;(2)若,求数列的前n项和.20.(12分)长方体中,,点分别在上,且.(1)求证:平面;(2)求平面与平面所成角的余弦值.21.(12分)已知函数(1)证明;(2)设,证明:若一定有零点,并判断零点的个数22.(10分)已知等比数列的公比为,前项和为,,,(1)求(2)在平面直角坐标系中,设点,直线的斜率为,且,求数列的通项公式
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据正弦定理将化为边之间的关系,再结合余弦定理可得答案.【详解】若,则根据正弦定理得:,即,而,故,故选:C.2、B【解析】按照框图考虑成立和不成立即可求解.【详解】因为,,,所以输入,当成立时,,即,解得,,满足条件;当不成立时,,即,解得,,不满足条件;故.故选:B.3、C【解析】结合向量坐标运算以及抛物线的定义求得正确答案.【详解】设,因为是抛物线上的点,F是抛物线C的焦点,所以,准线为:,因此,所以,即,由抛物线的定义可得,所以故选:C4、D【解析】首先判断原命题的真假,写出其逆命题,即可判断其真假,再根据互为逆否命题的两个命题同真假,即可判断;【详解】解:因为命题“,则”为真命题,所以其逆否命题也为真命题;其逆命题为:则,显然也为真命题,故其否命题也为真命题;故命题“,则”及其逆命题、否命题和逆否命题这四个命题中,真命题有4个;故选:D5、B【解析】由空间中直线与直线、直线与平面、平面与平面的位置关系分析选项A,C,D,由平面与平面垂直的判定定理判定选项D.【详解】选项A.由,,直线l,m可能相交、平行,异面,故不正确.选项B.由,,则,故正确.选项C.由,,直线l,m可能相交、平行,异面,故不正确.选项D.由,,则可能相交,可能平行,故不正确.故选:B6、A【解析】由空间向量共面定理构造方程求得结果.【详解】空间四点共面,但任意三点不共线,,解得:.故选:A.7、C【解析】取中间值,化成同底利用单调性比较可得.【详解】,,,故,故选:C8、C【解析】根据“杨辉三角”找出数列1,2,3,3,6,4,10,5,…之间的关系即可。【详解】由题意可得从第3行起的每行第三个数:,所以第行的第三个数为在该数列中,第37项为第21行第三个数,所以该数列的第37项为故选:C【点睛】本题主要考查了归纳、推理的能力,属于中等题。9、B【解析】运用不等式的性质及举反例的方法可求解.详解】对于A,如,满足条件,但不成立,故A不正确;对于B,因为,所以,所以,故B正确;对于C,因为,所以,所以不成立,故C不正确;对于D,因为,所以,所以,故D不正确.故选:B10、C【解析】利用空间向量的坐标运算即可求解.【详解】因为,,所以,故选:C.11、D【解析】根据两直线平行可得出关于实数的等式,由此可解得实数的值.【详解】由于直线与直线平行,则,解得.故选:D.12、C【解析】求出两次取球都没有取到3的概率,再利用对立事件的概率公式计算作答.【详解】依题意,每次取到标号为3的球的事件为A,则,且每次取球是相互独立的,在两次取得小球中,标号最大值是3的事件M,其对立事件是两次都没有取到标号为3的球的事件,,则有,所以在两次取得小球中,标号最大值是3的概率为.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、①.5②.【解析】设,根据题意得到数列是等差数列,求得,得到,利用,结合“累加法”,即可求得.【详解】解:由题意,数列满足,所以当时,,,解得,设,则,且,所以数列是等差数列,公差为,首项为,所以,即,所以,当时,可得,其中也满足,所以数列的通项公式为.故答案为:;.14、【解析】由题可得,求导可得的单调性,将的最小值代入,即得.【详解】∵,,使得成立,∴由,得,当时,,∴在区间上单调递减,在区间上单调递增,∴函数在区间上的最小值为又在上单调递增,∴函数在区间上的最小值为,∴,即实数的取值范围是故答案为:.15、2【解析】画出不等式组对应的可行域,平移动直线后可得目标函数的最小值.【详解】不等式组对应的可行域如图所示:将初始直线平移至点时,可取最小值,由可得,故,故答案为:2.16、【解析】根据题意可知圆锥侧面展开图的半圆的半径为cm,再根据底面圆的周长等于侧面的弧长,即可求出结果.【详解】设底面圆的半径为,由于侧面展开图是一个半圆,又圆锥的母线长为cm,所以该半圆的半径为cm,所以,所以(cm).故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,(2)证明见解析【解析】(1)在等式两边同时除以,结合等差数列的定义可证得数列为等差数列,确定该数列的首项和公差,可求得的表达式;(2)求得,利用裂项相消法求得,即可证得原不等式成立.【小问1详解】解:在等式两边同时除以可得且,所以,数列是以为首项,以为公差的等差数列,则,因此,.【小问2详解】证明:,所以,.故原不等式得证.18、(1);(2),.【解析】(1)根据等差数列和等比数列的通项公式进行求解即可;(2)根据等差数列的通项公式,结合等比数列的前项和公式进行求解即可.【小问1详解】设等差数列的公差为,因为成等差数列,所以有,因成等比数列,所以,所以;【小问2详解】由题意可知:在和之间插入个,在和之间插入个,,在和之间插入个,此时共插入的个数为:,在和之间插入个,此时共插入的个数为:,因此.19、(1)(2)【解析】(1)根据等差数列的通项公式和等比中项,可得,再根据等差数列的前项和公式,即可求出,,进而求出结果;(2)由(1)得,结合等比数列前项和公式和对数运算性质,利用分组求和,即可求出结果.【小问1详解】解:设的公差为,由,,成等比数列可知,即,化简得.由可得,所以.将代入,得,,所以.小问2详解】解:由(1)得,所以.20、(1)证明见解析.(2)【解析】(1)根据线面垂直的性质和判定可得证;(2)以为坐标原点,分以所在直线为轴建立如图所示的空间直角坐标系,由面面角的空间向量求解方法可得答案.【小问1详解】证明:长方体中,平面,又平面,又平面,又平面同理可证,而平面,平面【小问2详解】解:以为坐标原点,分以所在直线为轴建立如图所示的空间直角坐标系.从而,,,由(1)知,为平面的一个法向量,设平面的法向量为,则,,则,从而,令,则,得平面的一个法向量为由图示得平面与平面所成的角为锐角,平面与平面所成的角的余弦值为21、(1)证明见解析;(2)证明见解析,1个零点.【解析】(1)求导同分化简,构造新函数判断导数正负即可;(2)令g(x)=0,化简方程,将问题转化为讨论方程解的个数问题.【小问1详解】,设,则,时,递减,时,递增,而,所以时,,所以;小问2详解】有零点,则有解,即有解,又,则只要,因为,方程可以化为,现在证明有解,令,则,可知在递减,在递增,所以,因为,所以,在内恒有,而在递增,当x=时,h()=,故根据零点存在性定理知在存在唯一零点.所以有且只有一个零点,所以有零点,有一个零点【点睛】本题关键
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中学学生社团活动经费管理职责制度
- 2026广东惠州市博罗县村级经济联盟有限公司招聘1人考试备考题库及答案解析
- 图书馆图书分类编目制度
- 企业员工培训与职业规划制度
- 培训保障人员待遇制度
- 教师培训奖罚制度
- 企业职工培训制度
- 企业班组培训考核制度
- 教师德育培训制度
- 培训方案制度汇编
- 雾化吸入操作教学课件
- 2025年小学图书馆自查报告
- 【语文】广东省佛山市罗行小学一年级上册期末复习试卷
- 2025年医疗器械注册代理协议
- 广西壮族自治区职教高考英语学科联考卷(12月份)和参考答案解析
- 新疆三校生考试题及答案
- 2026年《必背60题》肿瘤内科医师高频面试题包含答案
- 2025新疆亚新煤层气投资开发(集团)有限责任公司第三批选聘/招聘笔试历年参考题库附带答案详解
- 围手术期心肌梗塞的护理
- 超市门口钥匙管理制度
- 代贴现服务合同范本
评论
0/150
提交评论