安徽怀宁县高河中学2025-2026学年高一上学期12月月考数学试题(解析版)_第1页
安徽怀宁县高河中学2025-2026学年高一上学期12月月考数学试题(解析版)_第2页
安徽怀宁县高河中学2025-2026学年高一上学期12月月考数学试题(解析版)_第3页
安徽怀宁县高河中学2025-2026学年高一上学期12月月考数学试题(解析版)_第4页
安徽怀宁县高河中学2025-2026学年高一上学期12月月考数学试题(解析版)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高河中学2025-2026学年度第一学期12月月考高一数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则()A. B. C. D.【答案】C【解析】【分析】分别求集合,,再求它们的交集.【详解】因为集合,,所以.故选:C2.在下列区间中,方程的实数解所在的区间为()A. B. C. D.【答案】C【解析】【分析】由函数单调性以及零点存在定理即可求解.【详解】由题意函数单调递增,且,由零点存在定理可知方程的实数解所在的区间只能为.故选:C.3.若,则“”是“”的()A.充要条件 B.必要不充分条件C.充分不必要条件 D.既不充分也不必要条件【答案】D【解析】【分析】根据充分条件、必要条件的定义判断即可.【详解】若,则,所以“”不能得出“”;若,则,所以“”不能得出“”.综上可知,“”是“”的既不充分也不必要条件.故选:D.4.若正数满足,则的最大值为()A.6 B.9 C. D.【答案】C【解析】【分析】由基本不等式求解即可.【详解】解:因为,所以,当且仅当时取等号.故选:C.5.下列命题的否定是真命题的是()A.每个正方形都是平行四边形B.是无理数,是无理数C.,D.,关于x的方程有实数根【答案】B【解析】【分析】利用相关知识,逐一分析各命题的真假性,从而得到其否定的真假性,由此得解.【详解】对于A,显然每个正方形都是平行四边形,故该命题是真命题,所以该命题的否定是假命题,故A错误;对于B,当时,满足是无理数,但是有理数,故该命题是假命题,所以该命题的否定是真命题,故B正确;对于C,当时,满足,此时,故该命题是真命题,所以该命题的否定是假命题,故C错误;对于D,对于方程,有恒成立,故该命题是真命题,所以该命题的否定是假命题,故D错误;故选:B.6.已知,则()A. B. C. D.【答案】A【解析】【分析】将指数式两边同时取常用对数,然后利用对数的运算法则计算即可.【详解】由得,所以,解得,故选:A.7.当生物死亡后,它机体内原有的碳14含量会按确定的比率衰减(称为衰减率),大约经过N年衰减为原来的一半,这个时间称为“半衰期”.按照上述变化规律,生物体内碳14原有初始质量为Q,该生物体内碳14所剩质量y与死亡年数x的函数关系为()A. B.C. D.【答案】D【解析】【分析】根据题意,结合半衰期的定义,建立指数函数模型,从而得到函数关系式.【详解】设死亡生物体内碳14含量的年衰减率为,将刚死亡生物体内碳14含量看成1个单位,根据经过N年衰减为原来的一半,则,即,且生物体内碳14原有初始质量为Q所以生物体内碳14所剩质量y与死亡年数x的函数关系为即故选:D.8.已知是定义在上的偶函数,且在上单调递增,又,则的大小关系为()A. B.C. D.【答案】A【解析】【分析】由题意得到在上是减函数,再根据判断.【详解】解:是定义在上的偶函数,且在上单调递增,在上减函数.而,,,即.故选:A.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.函数,则下列选项正确的是()A.是偶函数 B.是奇函数C.是偶函数 D.是奇函数【答案】BC【解析】【分析】利用奇函数和偶函数的定义,判断各选项中的结论.【详解】函数,函数定义域都是R,,,设,,即,不是偶函数,A选项错误;设,,是奇函数,B选项正确;设,,是偶函数,C选项正确;设,,是偶函数,D选项错误.故选:BC10.已知实数满足,则下列说法正确的是()A. B. C. D.【答案】AC【解析】【分析】利用幂指对函数的性质比较大小即可.【详解】∵.∴即,故项正确,选项不正确;∵∴,故选项正确故选:AC11.已知的解集是,则下列说法正确的是()A.不等式的解集是B.的最小值是C.若有解,则的取值范围是或D.当时,的值域是,则的取值范围是【答案】ABD【解析】【分析】根据给定条件,可得,解不等式判断A;利用均值不等式计算判断B;利用对勾函数求范围判断C;探讨二次函数值域判断D作答.【详解】因的解集是(,则是关于的方程的二根,且,于是得,即,对于A,不等式化为:,解得,故A正确;对于B,,当且仅当,即时取“”,故B正确;对于C,,令,则在上单调递增,即有,因有解,则,解得或,故C不正确;对于D,当时,,则,依题意,,由得,或,因在上的最小值为,从而得或,因此,故D正确.故选:ABD.三、填空题:本题共3小题,每小题5分,共15分.12._____.【答案】【解析】【分析】利用对数恒等式和对数的运算法则求解.【详解】,,,,,,故答案为:13.已知函数,若方程的实数解有3个,则实数k的取值范围是____________.【答案】【解析】【分析】数形结合求解,函数的图象与直线有3个交点即可求得k的取值范围.【详解】当时,其图象是抛物线的一部分,最小值为;当时,,其图象是指数型函数的一部分,的图象如图所示:由图知函数图象与直线有3个交点时,,即实数k的取值范围是.故答案为:.14.若函数在区间上为减函数,则a的取值范围是________.【答案】【解析】【分析】令,分和两种情况讨论,结合二次函数的性质得到不等式组,解得即可.【详解】解:令,则,当时,是增函数,由在区间上为减函数,则在上为减函数,故,即,解得;当时,是减函数,由在区间上为减函数,则在上为增函数,故,即,解得,综上,的取值范围是..故答案为:四、解答题:本题共5小题,共77分.(15题13分;16,17题15分;18,19题17分)15已知集合,集合.(1)若,求;(2)若,求实数a的取值范围.【答案】(1)(2)

【解析】【分析】(1)当时,化简集合A,集合B,再根据集合的并集运算可得解;(2)即,抓住集合A是否为空集讨论,再根据子集关系运算得解.【小问1详解】若,由,解得,则,又,即等价于,解得,则,.【小问2详解】由等价于,当时,集合,符合;当时,由,解得,即,又,,解得,综上,实数的取值范围是.16.已知函数.(1)若,证明:存在,使成立;(2)若成立;求实数m的取值范围.【答案】(1)证明过程见答案;(2)当时,;当时,.【解析】【分析】(1)当时,在上单调递增,由零点存在性定理证明即可;(2)分与两种情况讨论,利用函数单调性将等价转化为解或的不等式即可.【小问1详解】当时,在上单调递增,..由零点存在性定理知:存在,使成立.得证.【小问2详解】当时,单调递增,等价于,解得.当时,单调递减,等价于,解得.综上:当时,;当时,.17.在密闭培养环境中,某类细菌的繁殖在初期会较快,随着单位体积内细菌数量的增加,繁殖速度又会减慢.在一次实验中,检测到这类细菌在培养皿中的数量y(单位:百万个)与培养时间x(单位t小时)的关系为:x23691215y3.23.53.844.14.2根据表格中的数据画出散点图如下:为了描述从第2小时开始细菌数量随时间变化的关系.现有以下三种函数模型供选择:①,②,③.(1)选出你认为最符合实际的函数模型,并说明理由;(2)请选取表格中的两组数据,求出你选择的函数模型的解析式,并预测至少培养多少个小时,细菌数量达到5百万个.【答案】(1),理由见解析;(2)81【解析】【分析】(1)根据题意,函数解析式需满足函数在有定义,且随着单位体积内细菌数量的增加,繁殖速度又会减慢,故只有符合.(2)可选取数据,带入即可计算出,则当时即可求出答案.【小问1详解】最符合实际的函数模型为①,根据图像知函数解析式需满足函数在有定义,所以②不满足,又随着单位体积内细菌数量增加,繁殖速度又会减慢,所以③不符合,只有①满足,故最符合.【小问2详解】可选取表格中的两组数据为:,代入得,则,当时,,所以可预测至少需培养81个小时,细菌数量达到5百万个.18.已知函数.(1)若为奇函数,证明:;(2)讨论的单调性.【答案】(1)证明见解析(2)答案见解析【解析】【分析】(1)根据奇函数的定义证明即可;(2)根据单调性的定义证明的单调性.【小问1详解】证明:的定义域为,对,都有,又为奇函数,则必有,即,整理可得,因为,所以,命题得证.【小问2详解】设,,且,,易知,,又在上为增函数,,可得,当时,,为增函数;当时,,为常函数无单调性;当时,,为减函数.19.已知函数.(1)求不等式的解集;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论