版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省宜宜昌市部分示范高中教学协作体2026届数学高二上期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中国古代《易经》一书中记载,人们通过在绳子上打结来记录数据,即“结绳计数”,如图,一位古人在从右到左(即从低位到高位)依次排列的红绳子上打结,满六进一,用6来记录每年进的钱数,由图可得,这位古人一年收入的钱数用十进制表示为()A.180 B.179C.178 D.1772.若函数在上为单调增函数,则m的取值范围()A. B.C. D.3.“且”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.抛物线C:的焦点为F,P,R为C上位于F右侧的两点,若存在点Q使四边形PFRQ为正方形,则()A. B.C. D.5.已知双曲线:与椭圆:有相同的焦点,且一条渐近线方程为:,则双曲线的方程为()A. B.C. D.6.椭圆()的右顶点是抛物线的焦点,且短轴长为2,则该椭圆方程为()A. B.C. D.7.已知函数,则()A.3 B.C. D.8.《九章算术》是中国古代张苍、耿寿昌所撰写的一部数学专著,全书总结了战国、秦、汉时期的数学成就,其中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为:“今有人分钱,各人所得钱数依次为等差数列,其中前人所得之和与后人所得之和相等,问各得多少钱?”,则第人得钱数为()A.钱 B.钱C.钱 D.钱9.已知椭圆,则椭圆的长轴长为()A.2 B.4C. D.810.已知函数,在上随机任取一个数,则的概率为()A. B.C. D.11.已知数列中,其前项和为,且满足,数列的前项和为,若对恒成立,则实数的值可以是()A. B.2C.3 D.12.椭圆的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.与直线平行,且距离为的直线方程为______14.在一平面直角坐标系中,已知,现沿x轴将坐标平面折成60°的二面角,则折叠后A,B两点间的距离为___________.15.如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x=_____________,y=_____________16.如图,长方体中,,,,,分别是,,的中点,则异面直线与所成角为__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知各项均为正数的等比数列前项和为,且,.(1)求数列的通项公式;(2)若,求18.(12分)等差数列的前项和记为,已知.(1)求的通项公式:(2)求,并求为何值时的值最大.19.(12分)已知直线,直线,直线(1)若与的倾斜角互补,求m的值;(2)当m为何值时,三条直线能围成一个直角三角形20.(12分)已知等差数列的前n项和为,若公差,且,,成等比数列.(1)求的通项公式;(2)求数列的前n项和.21.(12分)已知函数f(x)+alnx,实数a>0(1)当a=2时,求函数f(x)在x=1处的切线方程;(2)讨论函数f(x)在区间(0,10)上的单调性和极值情况;(3)若存在x∈(0,+∞),使得关于x的不等式f(x)<2+a2x成立,求实数a的取值范围22.(10分)在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点;(I)求异面直线A1B,AC1所成角的余弦值;(II)求直线AB1与平面C1AD所成角的正弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别为、、,然后把它们相加即可.【详解】(个).所以古人一年收入的钱数用十进制表示为个.故选:D.2、B【解析】用函数单调性确定参数,使用参数分离法即可.【详解】,在上是增函数,即恒成立,;设,;∴时,是增函数;时,是减函数;故时,,∴;故选:B.3、A【解析】按照充分必要条件的判断方法判断,“且”能否推出“”,以及“”能否推出“且”,判断得到正确答案,【详解】当且时,成立,反过来,当时,例:,不能推出且.所以“且”是“”的充分不必要条件.故选:A【点睛】本题考查充分不必要条件的判断,重点考查基本判断方法,属于基础题型.4、A【解析】不妨设,不妨设,则,利用抛物线的对称性及正方形的性质列出的方程求得后可得结论【详解】如图所示,设,不妨设,则,由抛物线的对称性及正方形的性质可得,解得(正数舍去),所以故选:A5、B【解析】由渐近线方程,设出双曲线方程,结合与椭圆有相同的焦点,求出双曲线方程.【详解】∵双曲线:的一条渐近线方程为:∴设双曲线:∵双曲线与椭圆有相同的焦点∴,解得:∴双曲线的方程为.故选:B.6、A【解析】求得抛物线的焦点从而求得,再结合题意求得,即可写出椭圆方程.【详解】因为抛物线的焦点坐标为,故可得;又短轴长为2,故可得,即;故椭圆方程为:.故选:.7、B【解析】由导数运算法则求出导发函数,然后可得导数值【详解】由题意,所以故选:B8、A【解析】设第所得钱数为钱,设数列、、、、的公差为,根据已知条件可得出关于、的值,即可求得的值.【详解】设第所得钱数为钱,则数列、、、、为等差数列,设数列、、、、公差为,则,解得,故.故选:A.9、B【解析】根据椭圆的方程求出即得解.【详解】解:由题得椭圆的所以椭圆的长轴长为.故选:B10、A【解析】先解不等式,然后由区间长度比可得.【详解】解不等式,得,所以,即的概率为.故选:A11、D【解析】由求出,从而可以求,再根据已知条件不等式恒成立,可以进行适当放大即可.【详解】若n=1,则,故;若,则由得,故,所以,,又因为对恒成立,当时,则恒成立,当时,,所以,,,若n为奇数,则;若n为偶数,则,所以所以,对恒成立,必须满足.故选:D12、A【解析】由椭圆标准方程求得,再计算出后可得离心率【详解】在椭圆中,,,,因此,该椭圆的离心率为.故选:A.【点睛】本题考查求椭圆的离心率,根据椭圆标准方程求出即可二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】由题意,设所求直线方程为,根据两平行直线间的距离公式即可求解.【详解】解:由题意,设所求直线方程为,因为直线与直线的距离为,所以,解得或,所以所求直线方程为或,故答案为:或.14、【解析】平面直角坐标系中,沿轴将坐标平面折成的二面角后,在平面上的射影为,作轴,交轴于点,通过用向量的数量积转化求解距离即可.【详解】在直角坐标系中,已知,现沿轴将坐标平面折成的二面角后,在平面上的射影为,作轴,交轴于点,所以,所以,所以,故答案为:15、①.3②.5【解析】根据茎叶图进行数据分析,列方程求出x、y.【详解】由题意,甲组数据为56,62,65,70+x,74;乙组数据为59,61,67,60+y,78.要使两组数据中位数相等,有65=60+y,所以y=5.又平均数相同,则,解得x=3.故答案为:3;5.16、【解析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角.【详解】解:以为原点,为轴,为轴,为轴,建立空间直角坐标系,,0,,,0,,,2,,,1,,,,设异面直线与所成角为,,异面直线与所成角为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)9【解析】(1)根据题意列出关于等比数列首项、公比的方程组即可解决;(2)利用等比数列的前项和的公式,解方程即可解决.【小问1详解】设各项均为正数的等比数列首项为,公比为则有,解之得则等比数列的通项公式.【小问2详解】由,可得18、(1);(2)当或时,的值最大.【解析】(1)根据等差数列前项和公式,结合等差数列的通项公式进行求解即可;(2)根据等差数列的性质进行求解即可.【小问1详解】设等差数列的公差为,因为,所以有,即;【小问2详解】由(1)可知,所以该数列是递减数列,而,当时,解得:,因此当或时,的值最大.19、(1)(2)0,,.【解析】(1)根据题意得,进而求解得答案;(2)根据题意,分别讨论与垂直,与垂直,与垂直求解,并检验即可得答案【小问1详解】解:因为与的倾斜角互补,所以,直线变形为,故所以,解得【小问2详解】解:由题意,若和垂直可得:,解得,因为当时,,,,构不成三角形,当时,经验证符合题意;故;同理,若和垂直可得:,解得,舍去;若和垂直可得:,解得或,经验证符合题意;故m的值为:0,,.20、(1);(2).【解析】(1)由等差数列的通项公式、前n项和公式结合等比数列的性质列方程可得数列首项与公差,即可得解;(2)由,结合裂项相消法即可得解.【详解】(1)因为数列为等差数列,,,,成等比数列,所以,所以,即,又因为,所以,所以;(2)因为,所以.【点睛】本题考查了等差数列与等比数列的综合应用及裂项相消法的应用,考查了运算求解能力,属于中档题.21、(1)4x﹣y+2=0(2)答案见解析(3)(0,2)∪(2,+∞)【解析】(1)求出f(x)的导数,可得切线的斜率和切点坐标,由直线的点斜式方程可得所求切线的方程;(2)求得f(x)的导数,分a、0<a两种情况讨论求出答案即可;(3)由题意可得存在x∈(0,+∞),使得不等式成立,令,x>0,求得其最小值,再把最小值看成关于的函数,结合其单调性和极值可得答案【小问1详解】函数f(x)的定义域为(0,+∞),当a=2时,,导数为4,可得f(x)在x=1处的切线的斜率为4,又f(1)=6,所以f(x)在x=1处的切线的方程为y﹣6=4(x﹣1),即4x﹣y+2=0;【小问2详解】f(x)的导数为f′(x)a2,x>0,令f′(x)=0,可得x(舍去),①当010,即a时,当0<x时,f′(x)<0,f(x)递减;当x<10时,f′(x)>0,f(x)递增所以f(x)在(0,)上递减,在(,10)上递增,f(x)在x处取得极小值,无极大值;②当10即0<a时,f′(x)<0,f(x)在(0,10)上递减,无极值综上可得,当a时,f(x)在(0,)单调递减,在(,10)上单调递增,f(x)在x时取得极小值,无极大值当0<a时,f(x)在区间(0,10)上递减,无极值;【小问3详解】存在x∈(0,+∞),使得不等式f(x)<2+a2x成立等价为存在x∈(0,+∞),使得不等式alnx﹣2<0成立令,x>0,g′(x),因为a>0,可得当0<x时,g′(x)<0,g(x)递减;当x时,g′(x)>0,g(x)递增,所以当x时,g(x)取得极小值,且为最小值,由题意可得,令,,令h′(x)=0,可得x=2,当x∈(0,2)时,h′(x)>0,h(x)递增;当x∈(2,+∞)时,h′(x)<0,h(x)递减所以当x=2时,h(x)取得极大值,且为最大值h(2)=0所以满足的实数a的取值范围是(0,2)∪(2,+∞)22、(I)(II)【解析】(I)以,,为x,y,z轴建立空间直角坐标系A﹣xyz,可得和的坐标,可得cos<,>,可得答案;(II)由(I)知,=(2,0,﹣4),=(1,1,0),设平面C1AD的法向量为=(x,y,z),由可得=(1,﹣1,),设直线AB1与平面C1AD所成的角为θ,则sinθ=|cos<,>|=,进而可得答案解:(I)以,,x,y,z
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业员工培训与考核制度
- 2026湖南娄底市妇幼保健院公开招聘专业技术人员参考题库附答案
- 2026湖南长沙市天心区教育局白沙润府第一幼儿园教职工招聘参考题库附答案
- 2026福建厦门市松柏中学校园招聘9人参考题库附答案
- 2026福建漳州市中医院招聘临时人员1人备考题库附答案
- 2026福建省面向西北农林科技大学选调生选拔工作备考题库附答案
- 2026秋季威海银行校园招聘考试备考题库附答案
- 公共交通线路优化调整制度
- 2026辽宁营口市老边区校园招聘教师24人(辽宁师范大学专场)考试备考题库附答案
- 2026黑龙江科技大学上半年公开招聘博士教师66人参考题库附答案
- GB/T 24526-2009炭素材料全硫含量测定方法
- GB/T 17793-2010加工铜及铜合金板带材外形尺寸及允许偏差
- 六个盒子诊断调查表+解析
- GB/T 15107-2005旅游鞋
- GB/T 1184-1996形状和位置公差未注公差值
- 单晶结构分析原理与实践
- 蒸汽管道安装监理实施细则
- 2022年武汉首义科技创新投资发展集团有限公司招聘笔试试题及答案解析
- 旅游地接合作协议(模板)
- 众智SUN日照分析软件操作手册
- 儿童急性中毒(课堂PPT)
评论
0/150
提交评论