2026届安徽六安市舒城中学高二上数学期末学业质量监测试题含解析_第1页
2026届安徽六安市舒城中学高二上数学期末学业质量监测试题含解析_第2页
2026届安徽六安市舒城中学高二上数学期末学业质量监测试题含解析_第3页
2026届安徽六安市舒城中学高二上数学期末学业质量监测试题含解析_第4页
2026届安徽六安市舒城中学高二上数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届安徽六安市舒城中学高二上数学期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义域为的函数满足,且的导函数,则满足的的集合为A. B.C. D.2.将直线2x-y+λ=0沿x轴向左平移1个单位,所得直线与圆x2+y2+2x-4y=0相切,则实数λ值为()A.-3或7 B.-2或8C0或10 D.1或113.现有甲、乙、丙、丁、戊五位同学,分别带着A、B、C、D、E五个不同的礼物参加“抽盲盒”学游戏,先将五个礼物分别放入五个相同的盒子里,每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的概率为()A. B.C. D.4.已知,为正实数,且,则的最小值为()A. B.C. D.15.某种心脏手术成功率为0.9,现采用随机模拟方法估计“3例心脏手术全部成功”的概率.先利用计算器或计算机产生09之间取整数值的随机数,由于成功率是0.9,故我们用0表示手术不成功,1,2,3,4,5,6,7,8,9表示手术成功,再以每3个随机数为一组,作为3例手术的结果.经随机模拟产生如下10组随机数:812,832,569,683,271,989,730,537,925,907,由此估计“3例心脏手术全部成功”的概率为()A.0.9 B.0.8C.0.7 D.0.66.已知长方体的底面ABCD是边长为8的正方形,长方体的高为,则与对角面夹角的正弦值等于()A. B.C. D.7.若直线与直线垂直,则()A6 B.4C. D.8.若直线被圆截得的弦长为4,则的最大值是()A. B.C.1 D.29.函数是偶函数且在上单调递减,,则的解集为()A. B.C. D.10.若动点满足方程,则动点P的轨迹方程为()A. B.C. D.11.某几何体的三视图如图所示,则该几何体的体积为A.54 B.45C.27 D.8112.已知数列的前项和,且,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在递增等比数列中,其前项和,若,,则_________.14.过点与直线平行的直线的方程是________.15.设双曲线C:的焦点为,点为上一点,,则为_____.16.双曲线的离心率______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的上、下顶点分别为A,B,离心率为,椭圆C上的点与其右焦点F的最短距离为.(1)求椭圆C的标准方程;(2)若直线与椭圆C交于P,Q两点,直线PA与QB的斜率分别为,,且,那么直线l是否过定点,若过定点,求出该定点坐标;否则,请说明理由.18.(12分)已知函数,从下列两个条件中选择一个使得数列{an}成等比数列.条件1:数列{f(an)}是首项为4,公比为2的等比数列;条件2:数列{f(an)}是首项为4,公差为2的等差数列.(1)求数列{an}的通项公式;(2)求数列的前n项和.19.(12分)已知圆M:的圆心为M,圆N:的圆心为N,一动圆与圆N内切,与圆M外切,动圆的圆心E的轨迹为曲线C(1)求曲线C的方程;(2)已知点,直线l与曲线C交于A,B两点,且,直线l是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由20.(12分)已知函数在处取得极值7(1)求的值;(2)求函数在区间上的最大值21.(12分)已知椭圆:过点,且离心率(Ⅰ)求椭圆的标准方程;(Ⅱ)设的左、右焦点分别为,,过点作直线与椭圆交于,两点,,求的面积22.(10分)如图所示,在直四棱柱中,底面ABCD是菱形,点E,F分别在棱,上,且,(1)证明:点在平面BEF内;(2)若,,,求直线与平面BEF所成角的正弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用2f(x)<x+1构造函数g(x)=2f(x)-x-1,进而可得g′(x)=2f′(x)-1>0.得出g(x)的单调性结合g(1)=0即可解出【详解】令g(x)=2f(x)-x-1.因为f′(x)>,所以g′(x)=2f′(x)-1>0.所以g(x)单调增函数因为f(1)=1,所以g(1)=2f(1)-1-1=0.所以当x<1时,g(x)<0,即2f(x)<x+1.故选B.【点睛】本题主要考察导数的运算以及构造函数利用其单调性解不等式.属于中档题2、A【解析】根据直线平移的规律,由直线2x﹣y+λ=0沿x轴向左平移1个单位得到平移后直线的方程,然后因为此直线与圆相切得到圆心到直线的距离等于半径,利用点到直线的距离公式列出关于λ的方程,求出方程的解即可得到λ的值解:把圆的方程化为标准式方程得(x+1)2+(y﹣2)2=5,圆心坐标为(﹣1,2),半径为,直线2x﹣y+λ=0沿x轴向左平移1个单位后所得的直线方程为2(x+1)﹣y+λ=0,因为该直线与圆相切,则圆心(﹣1,2)到直线的距离d==r=,化简得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5,解得λ=﹣3或7故选A考点:直线与圆的位置关系3、D【解析】利用排列组合知识求出每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的情况个数,以及五人抽取五个礼物的总情况,两者相除即可.【详解】先从五人中抽取一人,恰好拿到自己礼物,有种情况,接下来的四人分为两种情况,一种是两两一对,两个人都拿到对方的礼物,有种情况,另一种是四个人都拿到另外一个人的礼物,不是两两一对,都拿到对方的情况,由种情况,综上:共有种情况,而五人抽五个礼物总数为种情况,故恰有一位同学拿到自己礼物的概率为.故选:D4、D【解析】利用基本不等式可求的最小值.【详解】可化为,由基本不等式可得,故,当且仅当时等号成立,故的最小值为1,故选:D.5、B【解析】由题可知10组随机数中表示“3例心脏手术全部成功”的有8组,即求.【详解】由题意,10组随机数:812,832,569,683,271,989,730,537,925,907,表示“3例心脏手术全部成功”的有:812,832,569,683,271,989,537,925,故8个,故估计“3例心脏手术全部成功”的概率为.故选:B.6、A【解析】建立空间直角坐标系,结合空间向量的夹角坐标公式即可求出线面角的正弦值.【详解】连接,建立如图所示的空间直角坐标系∵底面是边长为8的正方形,,∴,,,因为,且,所以平面,∴,平面的法向量,∴与对角面所成角的正弦值为故选:A.7、A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.8、A【解析】根据弦长求得的关系式,结合基本不等式求得的最大值.【详解】圆的圆心为,半径为,所以直线过圆心,即,由于为正数,所以,当且仅当时,等号成立.故选:A9、D【解析】分析可知函数在上为增函数,且有,将所求不等式变形为,可得出关于实数的不等式,由此可解得实数的取值范围.【详解】因为函数是偶函数且在上单调递减,则该函数在上为增函数,且,由可得,所以,,可得或,解得或.因此,不等式的解集为.故选:D.10、A【解析】根据方程可以利用几何意义得到动点P的轨迹方程是以与为焦点的椭圆方程,从而求出轨迹方程.【详解】由题意得:到与的距离之和为8,且8>4,故动点P的轨迹方程是以与为焦点的椭圆方程,故,,所以,,所以椭圆方程为.故选:A11、B【解析】由三视图可得该几何体是由平行六面体切割掉一个三棱锥而成,直观图如图所示,所以该几何体的体积为故选B点睛:本题考查了组合体的体积,由三视图还原出几何体,由四棱柱的体积减去三棱锥的体积.12、C【解析】由an=Sn-Sn-1,【详解】解:因为,所以,,两式相减可得,即,因为,,所以,即,时,也满足上式,所以,所以,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据等比数列下标和性质得到,从而解出、,即可求出公比,从而求出,,即可得解;【详解】解:因为,所以,因为,所以、为方程的两根,所以或,因为为递增的等比数列,所以,所以所以或(舍去),所以,,所以故答案为:14、【解析】根据给定条件设出所求直线方程,利用待定系数法求解即得.【详解】设与直线平行的直线的方程为,而点在直线上,于是得,解得,所以所求的直线的方程为.故答案为:15、14【解析】利用双曲线的定义求解即可【详解】由,得,则,因为点为上一点,所以,因为,所以,解得或(舍去),故答案为:1416、【解析】根据双曲线方程直接可得离心率.【详解】由,可得,,故,离心率,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)恒过点【解析】(1)设为椭圆上的点,根据椭圆的性质得到,再根据的取值范围,得到,再根据离心率求出、,最后根据,求出,即可得解;(2)设、,表示出、,联立直线与椭圆方程,消元列出韦达定理,由,即可得到,再根据,即可得到,从而得到,再将、代入计算可得;【小问1详解】解:设为椭圆上的点,为椭圆的右焦点,所以,因为,所以,又,所以、,因为,所以,所以椭圆方程为;【小问2详解】解:设、,依题意可得、,所以、,联立得,则即,所以、,因为,所以,即,由得,即,所以,即,,整理得,所以,即,即,解得或,当时直线过点,故舍去,所以,则直线恒过点;18、(1)(2)【解析】(1)根据所给的条件分别计算后即可判断,再通过满足题意的求出通项;(2)由(1)可得,再通过错位相减法求和即可.【小问1详解】若选择条件1,则有,可得,不满足题意;若选择条件2,则有,可得,满足题意,故.【小问2详解】由(1)可得,所以………①因此有……….②①②可得,即,化简得.19、(1),;(2)过,.【解析】(1)根据两圆内切和外切的性质,结合双曲线的定义进行求解即可;(2)设出直线l的方程与双曲线的方程联立,利用一元二次方程根与系数关系,结合平面向量数量积的坐标表示公式进行求解判断即可.【小问1详解】设圆E的圆心为,半径为r,则,,所以由双曲线定义可知,E的轨迹是以M,N为焦点、实轴长为6的双曲线的右支,所以动圆的圆心E的轨迹方程为,;【小问2详解】设,,直线l的方程为由得,且,故又,所以又,,所以,即.又故或若,则直线l的方程为,过点,与题意矛盾,所以,故,所以直线l的方程为,过点【点睛】关键点睛:利用一元二次方程根与系数的关系是解题的关键.20、(1);(2).【解析】(1)先对函数求导,根据题中条件,列出方程组求解,即可得出结果;(2)先由(1)得到,导数的方法研究其单调性,进而可求出最值.【详解】(1)因为,所以,又函数在处取得极值7,,解得;,所以,由得或;由得;满足题意;(2)又,由(1)得在上单调递增,在上单调递减,因此【点睛】方法点睛:该题考查的是有关利用导数研究函数的问题,解题方法如下:(1)先对函数求导,根据题意,结合函数在某个点处取得极值,导数为0,函数值为极值,列出方程组,求得结果;(2)将所求参数代入,得到解析式,利用导数研究其单调性,得到其最大值.21、(Ⅰ);(Ⅱ).【解析】(Ⅰ)根据已知点,离心率以及列方程组,解方程组可得的值即可求解;(Ⅱ)设,,直线的方程为,联立直线与椭圆方程消去,可得,,利用向量数量积的坐标表示列方程可得的值,计算,利用面积公式计算即可求解.【详解】(Ⅰ)将代入椭圆方程可得,即①因为离心率,即,②由①②解得,,故椭圆的标准方程为(Ⅱ)由题意可得,,设直线的方程为将直线的方程代入中,得,设,,则,所以,,所以,由,解得,所以,,因此22、(1)证明见

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论