版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山东省高密市高一上数学期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知a,b,,那么下列命题中正确的是()A.若,则 B.若,则C.若,且,则 D.若,且,则2.若,则等于A. B.C. D.3.某公司位员工的月工资(单位:元)为,,…,,其均值和方差分别为和,若从下月起每位员工的月工资增加元,则这位员工下月工资的均值和方差分别为A., B.,C, D.,4.在区间上任取一个数,则函数在上的最大值是3的概率为()A. B.C. D.5.一人打靶中连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶 B.两次都中靶C.两次都不中靶 D.只有一次中靶6.已知定义在上的函数满足:,且,,则方程在区间上的所有实根之和为A.-5 B.-6C.-7 D.-87.函数的零点所在区间为()A. B.C. D.8.若是第二象限角,则点在()A.第一象限 B.第二象限C.第三象限 D.第四象限9.已知是方程的两根,且,则的值为A. B.C.或 D.10.设函数,则下列函数中为奇函数的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的单调递减区间为__12.当时,函数的最大值为________.13.已知函数,R的图象与轴无公共点,求实数的取值范围是_________.14.由直线上的任意一个点向圆引切线,则切线长的最小值为________.15.已知函数,若方程有四个不同的解,且,则的最小值是______,的最大值是______.16.已知是定义在R上的奇函数,当时,,则当时,______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若是从四个数中任取的一个数,是从三个数中任取的一个数(1)求事件“”的概率;(2)求事件“方程有实数根”的概率18.若函数的自变量的取值范围为时,函数值的取值范围恰为,就称区间为的一个“和谐区间”.(1)先判断“函数没有“和谐区间”是否正确,再写出函数“和谐区间”;(2)若是定义在上的奇函数,当时,.(i)求的“和谐区间”;(ii)若函数的图象是在定义域内所有“和谐区间”上的图象,是否存在实数,使集合恰含有个元素,若存在,求出的取值范围;若不存在,请说明理由.19.设函数的定义域为,函数的定义域为.(1)求;(2)若,且函数在上递减,求的取值范围.20.已知函数的最小正周期为.(1)求函数的单调递增区间;(2)将函数的图象向左平移个单位,再向上平移个单位,得到函数的图象.若在上至少有个零点,求的最小值.21.在密闭培养环境中,某类细菌的繁殖在初期会较快,随着单位体积内细菌数量的增加,繁殖速度又会减慢.在一次实验中,检测到这类细菌在培养皿中的数量(单位:百万个)与培养时间(单位:小时)的关系为:根据表格中的数据画出散点图如下:为了描述从第小时开始细菌数量随时间变化的关系,现有以下三种模型供选择:①,②,③(1)选出你认为最符合实际的函数模型,并说明理由;(2)利用和这两组数据求出你选择的函数模型的解析式,并预测从第小时开始,至少再经过多少个小时,细菌数量达到百万个
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据不等式的性质判断【详解】若,显然有,所以,A正确;若,当时,,B错;若,则,当时,,,C错;若,且,也满足已知,此时,D错;故选:A2、B【解析】,.考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系第II卷(非选择题3、D【解析】均值为;方差为,故选D.考点:数据样本的均值与方差.4、A【解析】设函数,求出时的取值范围,再根据讨论的取值范围,判断是否能取得最大值,从而求出对应的概率值【详解】在区间上任取一个数,基本事件空间对应区间的长度是,由,得,∴,∴的最大值是或,即最大值是或;令,得,解得;又,∴;∴当时,,∴在上的最大值是,满足题意;当时,,∴函数在上的最大值是,由,得,的最大值不是;5、C【解析】根据互斥事件定义依次判断各个选项即可.【详解】对于A,若恰好中靶一次,则“至少有一次中靶”与“至多有一次中靶”同时发生,不是互斥事件,A错误;对于B,若两次都中靶,则“至少有一次中靶”与“两次都中靶”同时发生,不是互斥事件,B错误;对于C,若两次都不中靶,则“至少有一次中靶”与“两次都不中靶”不能同时发生,是互斥事件,C正确;对于D,若只有一次中靶,则“至少有一次中靶”与“只有一次中靶”同时发生,不是互斥事件,D错误.故选:C.6、C【解析】由题意知,函数的周期为2,则函数在区间上的图像如下图所示:由图形可知函数在区间上的交点为,易知点的横坐标为-3,若设的横坐标为,则点的横坐标为,所以方程在区间上的所有实数根之和为.考点:分段函数及基本函数的性质.7、B【解析】由零点存在定理判定可得答案.【详解】因为在上单调递减,且,,所以的零点所在区间为故选:B8、D【解析】先分析得到,即得点所在的象限.【详解】因为是第二象限角,所以,所以点在第四象限,故选D【点睛】本题主要考查三角函数的象限符合,意在考查学生对该知识的理解掌握水平,属于基础题.9、A【解析】∵是方程的两根,∴,∴又,∴,∵,∴又,∴,∴.选A点睛:解决三角恒等变换中给值求角问题的注意点解决“给值求角”问题时,解题的关键也是变角,即把所求角用含已知角的式子表示,然后求出适合的一个三角函数值.再根据所给的条件确定所求角的范围,最后结合该范围求得角,有时为了解题需要压缩角的取值范围10、A【解析】分别求出选项的函数解析式,再利用奇函数的定义即可得选项.【详解】由题意可得,对于A,是奇函数,故A正确;对于B,不是奇函数,故B不正确;对于C,,其定义域不关于原点对称,所以不是奇函数,故C不正确;对于D,,其定义域不关于原点对称,不是奇函数,故D不正确.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由根式内部的代数式大于等于0,求得原函数的定义域,再求出内层函数的减区间,即可得到原函数的减区间【详解】由,得或,令,该函数在上单调递减,而y=是定义域内的增函数,∴函数的单调递减区间为故答案为:12、【解析】分子分母同除以,再利用基本不等式求解即可.【详解】,,当且仅当时取等号,即函数的最大值为,故答案为:.13、【解析】令=t>0,则g(t)=>0对t>0恒成立,即对t>0恒成立,再由基本不等式求出的最大值即可.【详解】,R,令=t>0,则f(x)=g(t)=,由题可知g(t)在t>0时与横轴无公共点,则对t>0恒成立,即对t>0恒成立,∵,当且仅当,即时,等号成立,∴,∴.故答案为:.14、【解析】利用切线和点到圆心的距离关系即可得到结果.【详解】圆心坐标,半径要使切线长最小,则只需要点到圆心的距离最小,此时最小值为圆心到直线的距离,此时,故答案为:【点睛】本题考查了直线与圆的位置关系,同时考查了点到直线的距离公式,属于基础题.15、①.1②.4【解析】画出的图像,再数形结合分析参数的的最小值,再根据对称性与函数的解析式判断中的定量关系化简再求最值即可.【详解】画出的图像有:因为方程有四个不同的解,故的图像与有四个不同的交点,又由图,,故的取值范围是,故的最小值是1.又由图可知,,,故,故.故.又当时,.当时,,故.又在时为减函数,故当时取最大值.故答案为:(1).1(2).4【点睛】本题主要考查了数形结合求解函数零点个数以及范围的问题,需要根据题意分析交点间的关系,并结合函数的性质求解.属于难题.16、【解析】根据奇函数的性质求解【详解】时,,是奇函数,此时故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用列举法求解,先列出取两数的所有情况,再找出满足的情况,然后根据古典概型的概率公式求解即可,(2)由题意可得,再根据对立事件的概率公式求解【小问1详解】设事件表示“”因为是从四个数中任取的一个数,是从三个数中任取的一个数所以样本点一共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示的取值,第二个数表示的取值符合古典概型模型,事件包含其中3个样本点,故事件发生的概率为【小问2详解】若方程有实数根,则需,即记事件“方程有实数根”为事件,由(1)知,故18、(1)正确,;(2)(i)和,(ii)存在符合题意,理由见解析.【解析】(1)根据和谐区间的定义判断两个函数即可;(2)(i)根据是奇函数求出的解析式,再利用“和谐区间”的定义求出的“和谐区间”,(ii)由(i)可得的解析式,由与都是奇函数,问题转化为与的图象在第一象限内有一个交点,由单调性求出的端点坐标,代入可得临界值即可求解.【小问1详解】函数定义域为,且为奇函数,当时,单调递减,任意的,则,所以时,没有“和谐区间”,同理时,没有“和谐区间”,所以“函数没有“和谐区间”是正确的,在上单调递减,所以在上单调递减,所以值域为,即,所以,所以,是方程的两根,因为,解得,所以函数的“和谐区间”为.【小问2详解】(i)因为当时,所以当时,,所以因为是定义在上的奇函数,所以,所以当时,,可得,设,因为在上单调递减,所以,,所以,,所以,是方程的两个不相等的正数根,即,是方程的两个不相等的正数根,且,所以,,所以在区间上的“和谐区间”是,同理可得,在区间上的“和谐区间”是.所以的“和谐区间”是和,(ii)存在,理由如下:因为函数的图象是以在定义域内所有“和谐区间”上的图象,所以若集合恰含有个元素,等价于函数与函数的图象有两个交点,且一个交点在第一象限,一个交点在第三象限.因为与都是奇函数,所以只需考虑与的图象在第一象限内有一个交点.因为在区间上单调递减,所以曲线的两个端点为,.因为,所以的零点是,,或所以当的图象过点时,,;当图象过点时,,,所以当时,与的图象在第一象限内有一个交点.所以与的图象有两个交点.所以的取值范围是.19、(1);(2).【解析】(1)先求出集合,,然后由补集和并集的定义求解即可;(2)先利用交集求出集合,然后利用二次函数的单调性分析求解即可【详解】解:(1)由得,∴,由得,∴,∴,∴.(2)∵,,∴.由在上递减,得,即,∴.20、(1);(2).【解析】(1)利用正余弦的倍角公式,结合辅助角公式化简为标准正弦型三角函数,根据周期求得参数,再求其单调区间即可;(2)根据函数图像的平移求得的解析式,根据零点个数,即可求得参数的范围.【详解】(1)函数最小正周期为,则,则,所以,令,解得,则函数的单调递增区间为.(2)由题意:,令,得或.所以在每个周期上恰好有两个零点,若在上至少有个零点,应该大于等于第个零点的横坐标,则.【点睛】本题考查利用正余弦倍角公式和辅助角公式化简三角函数解析式,以及求三角函数的单调区间和零点个数,属综合中档题.21、(1),理由见解析;(2),至少再经过小时,细菌数量达到百万个【解析】(1)分析可知,所选函数必须满足三个条件:(ⅰ)定义域包含;(ⅱ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内墙瓷砖技术交底
- 内丘舒卿培训课件
- 画室虎年活动策划方案(3篇)
- 维修车厂管理制度内容(3篇)
- 部门活动经费使用管理制度(3篇)
- 销售合同与管理制度范本(3篇)
- 青海省资产管理制度(3篇)
- 云南省玉溪市2025-2026学年七年级上学期期末信息技术试题(解析版)
- 养老院健康监测制度
- 体育设施使用规范制度
- CJ/T 3066-1997内磁水处理器
- 院内急重症快速反应小组
- 湖南省省情试题及答案
- T/CIE 115-2021电子元器件失效机理、模式及影响分析(FMMEA)通用方法和程序
- 红岩中考试题及答案
- 智能路灯项目立项申请报告模板
- 临时用电变压器安装方案
- 2025年包头职业技术学院单招职业技能测试题库完整版
- 2024-2025学年浙江省杭州市余杭区五年级(上)期末数学试卷(含答案)
- 养老护理员的睡眠照料
- 疾控中心艾滋病工作汇报
评论
0/150
提交评论