版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省宁德市六校2026届数学高二上期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线C:-=1(a>b>0)的左焦点为F1,若过原点倾斜角为的直线与双曲线C左右两支交于M、N两点,且MF1NF1,则双曲线C的离心率是()A.2 B.C. D.2.将函数的图象向左平移个单位长度后,得到函数的图象,则()A. B.C. D.3.已知椭圆方程为,则该椭圆的焦距为()A.1 B.2C. D.4.二次方程的两根为2,,那么关于的不等式的解集为()A.或 B.或C. D.5.设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为()A.4 B.8C.16 D.326.设为椭圆上一点,,为左、右焦点,且,则()A.为锐角三角形 B.为钝角三角形C.为直角三角形 D.,,三点构不成三角形7.设为等差数列的前项和,若,,则公差的值为()A. B.2C.3 D.48.已知命题:,;命题:,使,若“”为假命题,则实数的取值范围是()A. B.C. D.9.记不超过x的最大整数为,如,.已知数列的通项公式,则使的正整数n的最大值为()A.5 B.6C.15 D.1610.已知双曲线的左、右焦点分别为,,为坐标原点,为双曲线在第一象限上的点,直线,分别交双曲线的左,右支于另一点,,若,且,则双曲线的离心率为()A. B.3C.2 D.11.在中,若,,则外接圆半径为()A. B.C. D.12.如图,正四棱柱ABCD—A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点,为抛物线:上不同于原点的两点,且,则的面积的最小值为__________.14.过椭圆的右焦点作两条相互垂直的直线m,n,直线m与椭圆交于A,B两点,直线n与椭圆交于C,D两点,若.则下列方程①;②;③;④.其中可以作为直线AB的方程的是______(写出所有正确答案的序号)15.已知P为抛物线上的一个动点,设P到抛物线准线的距离为d,点,那么的最小值为______16.已知数列的前n项和为,则取得最大值时n的值为__________________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)求适合下列条件的圆锥曲线的标准方程(1)中心在原点,实轴在轴上,一个焦点在直线上的等轴双曲线;(2)椭圆的中心在原点,焦点在轴上,离心率等于,且它的一个顶点恰好是抛物线的焦点;(3)经过点抛物线18.(12分)如图,在四棱锥P-ABCD中,底面四边形ABCD为直角梯形,,,,O为BD的中点,,(1)证明:平面ABCD;(2)求平面PAD与平面PBC所成锐二面角的余弦值19.(12分)锐角中满足,其中分别为内角的对边(I)求角;(II)若,求的取值范围20.(12分)已知三角形的内角所对的边分别为,且C为钝角.(1)求cosA;(2)若,,求三角形的面积.21.(12分)(1)若在是减函数,求实数m的取值范围;(2)已知函数在R上无极值点,求a的值.22.(10分)已知椭圆的离心率为,点在椭圆上,直线与交于,两点(1)求椭圆的方程及焦点坐标;(2)若线段的垂直平分线经过点,求的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据双曲线和直线的对称性,结合矩形的性质、双曲线的定义、离心率公式、余弦定理进行求解即可.【详解】设双曲线的右焦点为F2,过原点倾斜角为的直线为,设M、N分别在第三、第一象限,由双曲线和直线的对称性可知:M、N两点关于原点对称,而MF1NF1,因此四边形是矩形,而,所以是等边三角形,故,因此,因为,所以,在等腰三角形中,由余弦定理可知:,由矩形的性质可知:,由双曲线的定义可知:,故选:C【点睛】关键点睛:利用矩形的性质、双曲线的定义是解题的关键.2、A【解析】先化简函数表达式,然后再平移即可.【详解】函数的图象向左平移个单位长度后,得到的图象.故选:A3、B【解析】根据椭圆中之间的关系,结合椭圆焦距的定义进行求解即可.【详解】由椭圆的标准方程可知:,则焦距为,故选:B.4、B【解析】根据,确定二次函数的图象开口方向,再由二次方程的两根为2,,写出不等式的解集.【详解】因为二次方程的两根为2,,又二次函数的图象开口向上,所以不等式的解集为或,故选:B5、B【解析】因为,可得双曲线的渐近线方程是,与直线联立方程求得,两点坐标,即可求得,根据的面积为,可得值,根据,结合均值不等式,即可求得答案.【详解】双曲线的渐近线方程是直线与双曲线的两条渐近线分别交于,两点不妨设为在第一象限,在第四象限联立,解得故联立,解得故面积为:双曲线其焦距为当且仅当取等号的焦距的最小值:故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.6、D【解析】根据椭圆方程求出,然后结合椭圆定义和已知条件求出并求出,进而判断答案.【详解】由题意可知,,由椭圆的定义可知,而,联立方程解得,且,则6+2=8,即不构成三角形.故选:D.7、C【解析】根据等差数列前项和公式进行求解即可.【详解】,故选:C8、D【解析】根据题意,判断命题和的真假性,结合判别式与二次函数恒成立问题,即可求解.【详解】根据题意,由为假命题可得“”为真命题,即p、q都为真命题,故,解得故选:D9、C【解析】根据取整函数的定义,可求出的值,即可得到答案;【详解】,,,,,,当时,,使的正整数n的最大值为,故选:C10、D【解析】由双曲线的定义可设,,由平面几何知识可得四边形为平行四边形,三角形,用余弦定理,可得,的方程,再由离心率公式可得所求值【详解】由双曲线的定义可得,由,可得,,结合双曲线性质可以得到,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故,对三角形,用余弦定理,得到,结合,可得,,,代入上式子中,得到,即,结合离心率满足,即可得出,故选:D【点睛】本题考查求双曲线的离心率,熟记双曲线的简单性质即可,属于常考题型.11、A【解析】根据三角形面积公式求出c,再由余弦定理求出a,根据正弦定理即可求外接圆半径.【详解】,,,解得由正弦定理可得:,所以故选:A12、D【解析】设AA1=2AB=2,因为,所以异面直线A1B与AD1所成角,,故选D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设,,利用可得即可求得,利用两点间距离公式求出、,面积,利用基本不等式即可求最值.【详解】设,,由可得,解得:,,,,,所以,当且仅当时等号成立,所以的面积的最小值为,故答案为:.【点睛】关键点点睛:本题解题的关键点是设,坐标,采用设而不求的方法,将转化为,求出参数之间的关系,再利用基本不等式求的最值.14、①②【解析】①②结合椭圆方程得到与椭圆参数的关系,即可判断;③④联立直线与椭圆方程,利用弦长公式求,即可判断.【详解】由题设,且右焦点为,①时直线,故,则符合题设;②时,同①知:符合题设;③时直线,联立直线AB与椭圆方程并整理得:,则,同理可得,则,不合题设;④时,同③分析知:,不合题设;故答案为:①②.15、5【解析】由抛物线的定义可得,所以,由图可知当三点共线时,取得最小值,从而可求得结果【详解】抛物线的焦点,准线为,如图,过作垂直准线于点,则,所以,由图可知当三点共线时,取得最小值,即最小值为,,所以的最小值为5,故答案为:516、①.13②.##3.4【解析】由题可得利用函数的单调性可得取得最大值时n的值,然后利用,即求.【详解】∵,∴当时,单调递减且,当时,单调递减且,∴时,取得最大值,∴.故答案为:13;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)或【解析】(1)由已知求得,再由等轴双曲线的性质可求得则,由此可求得双曲线的方程;(2)由已知求得抛物线的焦点为,得出椭圆的,再根据椭圆的离心率求得,由此可得出椭圆的方程;(3)设抛物线的标准方程为:或,代入点求解即可.【小问1详解】解:对于直线,令,得,所以,则,所以,所以中心在原点,实轴在轴上,一个焦点在直线上的等轴双曲线的方程为;【小问2详解】解:由得抛物线的焦点为,所以对于椭圆,,又椭圆的离心率为,所以,解得,所以椭圆的方程;【小问3详解】解:因为点在第三象限,所以满足条件的抛物线的标准方程可以是:或,代入点得或,解得或,所以经过点的抛物线的方程为或18、(1)见解析(2)【解析】(1)连接,利用勾股定理证明,又可证明,根据线面垂直的判定定理证明即可;(2)建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面和平面的法向量,由向量的夹角公式求解即可小问1详解】证明:如图,连接,在中,由,可得,因为,,所以,,因为,,,则,故,因为,,,平面,则平面;【小问2详解】解:由(1)可知,,,两两垂直,以点为坐标原点,建立空间直角坐标系如图所示,则,0,,,0,,,0,,,2,,,0,,所以,则,,,又,设平面的法向量为,则,令,则,,故,设平面的法向量为,因为,所以,令,则,,故,所以,故平面与平面所成锐二面角的余弦值为19、(I);(II)【解析】(I)由正弦定理边角互化并整理得,进而由余弦定理得;(II)正弦定理得,故,再根据三角恒等变换得,由于锐角中,,进而根据三角函数性质求得答案.【详解】解:(I)由正弦定理得所以,即,所以,因为锐角中,,所以;(II)因为,,所以所以,因为,所以,所以,所以,所以20、(1)(2)【解析】(1)由正弦定理边化角,可求得角的正弦,由同角关系结合条件可得答案.(2)由(1),由余弦定理,求出边的长,进一步求得面积【小问1详解】因为,由正弦定理得因,所以.因为角为钝角,所以角为锐角,所以【小问2详解】由(1),由余弦定理,得,所以,解得或,不合题意舍去,故的面积为=21、(1);(2)1【解析】(1)将问题转化为在内恒成立,求出的最小值,即可得到答案;(2)对函数求导得,由,即可得到答案;【详解】(1)依题意知,在内恒成立,所以在内恒成立,所以,因为的最小值为1,所以,所以实数m的取值范围是.(2),依题意有,即,,解得.22、(1),(2)【解析】(1)由题意,列出关于a,b,c的方程组求解即可得答案;(2)设M(x1,y1),N(x2,y2),线段MN的中点(x0,y0),则,作差可得①,又线段MN的垂直平分线过点A(0,1),则②,联立直线MN与椭圆的方程,可得﹣t2+1+4k2>0(*),③,由①②③及(*)式联立即可求解【小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 混合动力电动汽车结构原理与检修 第2版 课件 学习情景2 混合动力电动汽车高压维修操作安全
- 年末晚会活动策划方案(3篇)
- 牛杂店工人管理制度范本(3篇)
- 甲醇炉燃气安全管理制度(3篇)
- 兽药质检培训
- 线上帮办团队管理制度内容(3篇)
- 蔬菜种植后期管理制度(3篇)
- 通信网管中心管理制度(3篇)
- 饭店协会档案管理制度(3篇)
- 《GA 1016-2012枪支(弹药)库室风险等级划分与安全防范要求》专题研究报告
- 2025年广东省中考语文试卷真题(含答案解析)
- 烫熨治疗法讲课件
- 2025至2030中国模块化变电站行业发展趋势分析与未来投资战略咨询研究报告
- 电厂清洁生产管理制度
- 2025年江苏省事业单位招聘考试教师招聘体育学科专业知识试题
- 机械设计年终述职报告
- 可信数据空间解决方案星环科技
- 建筑工程监理服务承诺书范文
- 知荣明耻主题班会课件
- 职业技术学院工业机器人技术高职技能考核标准1022(简化版)
- 声学基础课后题答案
评论
0/150
提交评论