版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省深州市中学2026届高二上数学期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.是双曲线:上一点,已知,则的值()A. B.C.或 D.2.在等比数列中,,则的公比为()A. B.C. D.3.为调查学生的课外阅读情况,学校从高二年级四个班的182人中随机抽取30人了解情况,若用系统抽样的方法,则抽样的间隔和随机剔除的个数分别为()A.6,2 B.2,3C.2,60 D.60,24.若向量,,则()A. B.C. D.5.已知抛物线的准线方程为,则此抛物线的标准方程为()A. B.C. D.6.已知两条平行直线:与:间的距离为3,则()A.25或-5 B.25C.5 D.21或-97.已知,,若,则实数的值为()A. B.C. D.8.有7名同学参加百米竞赛,预赛成绩各不相同,取前3名参加决赛,小明同学已经知道了自己的成绩,为了判断自己是否能进入决赛,他还需要知道7名同学成绩的()A.平均数 B.众数C.中位数 D.方差9.函数的图象大致是()A. B.C. D.10.已知点是抛物线上的一点,F是抛物线的焦点,则点M到F的距离等于()A.6 B.5C.4 D.211.在平面上给定相异两点,设点在同一平面上且满足,当且时,点的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故我们称这个圆为阿波罗尼斯圆.现有双曲线,为双曲线的左、右顶点,为双曲线的虚轴端点,动点满足,面积的最大值为,面积的最小值为,则双曲线的离心率为()A. B.C. D.12.直三棱柱ABC-A1B1C1中,△ABC为等边三角形,AA1=AB,M是A1C1的中点,则AM与平面所成角的正弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.将一枚质地均匀的骰子,先后抛掷次,则出现向上的点数之和为的概率是________.14.已知点,,其中,若线段的中点坐标为,则直线的方程为________15.二项式的展开式中,项的系数为__________.16.已知数列中,.若为等差数列,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥中,平面,底面是边长为2的菱形,分别为的中点.(1)证明:平面;(2)求三棱锥的体积.18.(12分)已知椭圆C:()过点,且离心率为(1)求椭圆C的方程;(2)过点()的直线l(不与x轴重合)与椭圆C交于A,B两点,点C与点B关于x轴对称,直线AC与x轴交于点Q,试问是否为定值?若是,请求出该定值,若不是,请说明理由19.(12分)若分别是椭圆的左、右焦点,是该椭圆上的一个动点,且(1)求椭圆的方程(2)是否存在过定点的直线与椭圆交于不同的两点,使(其中为坐标原点)?若存在,求出直线的斜率;若不存在,说明理由20.(12分)设命题对于任意,不等式恒成立.命题实数a满足(1)若命题p为真,求实数a的取值范围;(2)若“p或q”为真,“p且q”为假,求实数a的取值范围21.(12分)已知圆O:与圆C:(1)在①,②这两个条件中任选一个,填在下面的横线上,并解答若______,判断这两个圆的位置关系;(2)若,求直线被圆C截得的弦长注:若第(1)问选择两个条件分别作答,按第一个作答计分22.(10分)已知数列{}的首项=2,(n≥2,),,.(1)证明:{+1}为等比数列;(2)设数列{}的前n项和,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据双曲线定义,结合双曲线上的点到焦点的距离的取值范围,即可求解.【详解】双曲线方程为:,是双曲线:上一点,,,或,又,.故选:B2、D【解析】利用等比数列的性质把方程都变成和有关的式子后进行求解.【详解】由等比数列的等比中项性质可得,又,所以,因,所以,所以,故选:D.3、A【解析】根据系统抽样的方法即可求解.【详解】从人中抽取人,除以,商余,故抽样的间隔为,需要随机剔除人.故选:A.4、D【解析】由向量数量积的坐标运算求得数量积,模,结合向量的共线定义判断【详解】由已知,,,与不垂直,若,则,,但是,,因此与不共线故选:D5、D【解析】由已知设抛物线方程为,由题意可得,求出,从而可得抛物线的方程【详解】因为抛物线的准线方程为,所以设抛物线方程为,则,得,所以抛物线方程为,故选:D,6、A【解析】根据平行直线的性质,结合平行线间距离公式进行求解即可.【详解】因为直线:与:平行,所以有,因为两条平行直线:与:间距离为3,所以,或,当时,;当时,,故选:A7、A【解析】由,得,从而可得答案.【详解】解:因为,所以,即,解得.故选:A.8、C【解析】根据中位数的性质,结合题设按成绩排序7选3,即可知还需明确的成绩数据信息.【详解】由题设,7名同学参加百米竞赛,要取前3名参加决赛,则成绩从高到低排列,确定7名同学成绩的中位数,即第3名的成绩便可判断自己是否能进入决赛.故选:C.9、A【解析】根据函数的定义域及零点的情况即可得到答案.【详解】函数的定义域为,则排除选项、,当时,,则在上单调递减,且,,由零点存在定理可知在上存在一个零点,则排除,故选:.10、B【解析】先求出,再利用焦半径公式即可获解.【详解】由题意,,解得所以故选:B.11、C【解析】先求动点的轨迹方程,再根据面积的最大值求得,根据的面积最小值求,由此可求双曲线的离心率.【详解】设,,,依题意得,即,两边平方化简得,所以动点的轨迹是圆心为,半径的圆,当位于圆的最高点时的面积最大,所以,解得;当位于圆的最左端时的面积最小,所以,解得,故双曲线的离心率为.故选:C.12、B【解析】取的中点,以为原点,所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,即可根据线面角的向量公式求出【详解】如图所示,取的中点,以为原点,所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,不妨设,则,所以,平面的一个法向量为设AM与平面所成角为,向量与所成的角为,所以,即AM与平面所成角的正弦值为故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将向上的点数记作,先计算出所有的基本事件数,并列举出事件“出现向上的点数之和为”所包含的基本事件,然后利用古典概型的概率公式可计算出所求事件的概率.【详解】将骰子先后抛掷次,出现向上的点数记作,则基本事件数为,向上的点数之和为这一事件记为,则事件所包含的基本事件有:、、,共个基本事件,因此,.故答案为:.【点睛】本题考查利用古典概型的概率公式计算概率,解题时一般要列举出相应的基本事件,遵循不重不漏的基本原则,考查计算能力,属于基础题.14、【解析】根据中点坐标公式求出,再根据直线的两点式方程即可得出答案.【详解】解:由,,得线段的中点坐标为,所以,解得,所以直线的方程为,即.故答案为:.15、80【解析】利用二项式的通项公式进行求解即可.【详解】二项式的通项公式为:,令,所以项的系数为,故答案为:8016、【解析】利用等差中项求解即可【详解】由为等差数列,则,解得故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)取的中点,利用三角形中位线定理可证明BG//EF,由线线平行,可得线面平行;(2根据图像可得,以为底面,证明为高,利用三棱锥的体积公式,可得答案;【小问1详解】取的中点,因为为的中点,所以且,又因为为的中点,四边形为菱形,所以且,所以且,故四边形BFEG为平行四边形,所以BG//EF,因为面面,所以面.【小问2详解】因为底面是边长为2的菱形,,则为正三角形,所以因为面,所以为三棱锥的高所以三棱锥的体积.18、(1)(2)为定值【解析】(1)由题意可得解方程组求出,从而可得椭圆方程,(2)设直线AB:,,代入椭圆方程,消去,利用根与系数关系,再表示出直线AC的方程,从而可求出点Q的坐标,从而可表示出,然后化简可得结论【小问1详解】由题意得解得故椭圆C的方程为;【小问2详解】设直线AB:,,联立消去y得,设,,得,,因为点C与点B关于x轴对称,所以,所以直线AC的斜率为,直线AC的方程,令,解得可得,所以,因为,所以,所以为定值【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,解题的关键是将直线AB的方程代入椭圆方程中化简,利用根与系数关系,结合已知条件表示出直线AC的方程,从而可求出点Q的坐标,考查计算能力,属于中档题19、(1);(2)存在;【解析】(1)根据已知条件求得,由此求得椭圆的方程.(2)设出直线的方程并与椭圆方程联立,化简写出根与系数关系,利用列方程,化简求得直线的斜率.【小问1详解】依题意,得椭圆的方程为【小问2详解】存在.理由如下:显然当直线的斜率不存在,即时,不满足条件故由题意可设的方程为.由是直线与椭圆的两个不同的交点,设,由消去y,并整理,得,则,解得,由根与系数的关系得,,即存在斜率的直线与椭圆交于不同的两点,使20、(1)(2)【解析】(1)由即可获解(2)p、q一真一假,分情况讨论即可【小问1详解】由命题为真,得任意,不等式恒成立所以即所以实数的取值范围为【小问2详解】由命题为真,得因为“或”为真,“且”为假,所以p、q一真一假若真假,则,即若假真,即所以实数的取值范围为21、(1)选①:外离;选②:相切;(2)【解析】(1)不论选①还是选②,都要首先算出两圆的圆心距,然后和两圆的半径之和或差进行比较即可;(2)根据点到直线的距离公式,先计算圆心到直线的距离,然后利用圆心距、半径、弦长的一半之间的关系求解.【小问1详解】选①圆O的圆心为,半径为l;圆C的圆心为,半径为因为两圆的圆心距为,且两圆的半径之和为,所以两圆外离选②圆O的圆心为,半径为1.圆C的圆心为,半径为2因为两圆的圆心距为.且两圆的半径之和为,所以两圆外切【小问2详解】因为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业员工培训与技能提升计划制度
- 企业内部保密责任追究制度
- 2026福建省面向西南财经选调生选拔工作备考题库附答案
- 2026红河州公安局边境管理支队公开招聘边境管控专职辅警(15人)参考题库附答案
- 2026贵州博通橡塑制品有限公司招聘6人备考题库附答案
- 2026辽宁鞍山市铁东区事业单位面向应届毕业生招聘高层次急需紧缺人才16人参考题库附答案
- 2026重庆飞驶特人力资源管理有限公司外派至招商局检测车辆技术研究院有限公司招聘参考题库附答案
- 2026陕西西安长安大学工程设计研究院有限公司招聘参考题库附答案
- 226湖南郴州市宜章县妇幼保健院招募见习生2人参考题库附答案
- 四川藏区高速公路集团有限责任公司2026年校园招聘考试备考题库附答案
- 2023年版测量结果的计量溯源性要求
- 建筑能耗与碳排放研究报告
- GB 29415-2013耐火电缆槽盒
- 中国古代经济试题
- 真空采血管的分类及应用及采血顺序课件
- 软件定义汽车:产业生态创新白皮书
- 安装工程实体质量情况评价表
- 动力触探试验课件
- 城市轨道交通安全管理课件(完整版)
- 八大浪费培训(整理)
- 幼儿园机器人课件.ppt
评论
0/150
提交评论