上海市浦东新区2026届高二数学第一学期期末统考试题含解析_第1页
上海市浦东新区2026届高二数学第一学期期末统考试题含解析_第2页
上海市浦东新区2026届高二数学第一学期期末统考试题含解析_第3页
上海市浦东新区2026届高二数学第一学期期末统考试题含解析_第4页
上海市浦东新区2026届高二数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市浦东新区2026届高二数学第一学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过点,的直线的斜率等于1,则m的值为()A.1 B.4C.1或3 D.1或42.已知的周长为,顶点、的坐标分别为、,则点的轨迹方程为()A. B.C. D.3.已知双曲线C:的右焦点为,一条渐近线被圆截得的弦长为2b,则双曲线C的离心率为()A. B.C.2 D.4.直线与直线交于点Q,m是实数,O为坐标原点,则的最大值是()A.2 B.C. D.45.已知直线:与双曲线的两条渐近线分别相交于A、B两点,若C为直线与y轴的交点,且,则k等于()A.4 B.6C. D.6.已知随机变量X,Y满足,,且,则的值为()A.0.2 B.0.3C.0..5 D.0.67.已知数据的平均数是,方差是4,则数据的方差是()A.3.4 B.3.6C.3.8 D.48.在数列中,,则()A. B.C.2 D.19.已知椭圆C:的左右焦点为F1,F2,离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为()A. B.C. D.10.已知点为双曲线的左顶点,点和点在双曲线的右分支上,是等边三角形,则的面积是A. B.C. D.11.2020年12月4日,嫦娥五号探测器在月球表面第一次动态展示国旗.1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,,,,分别是大星中心点与四颗小星中心点的联结线,,则第三颗小星的一条边AB所在直线的倾斜角约为()A. B.C. D.12.已知数列满足,则()A.32 B.C.1320 D.二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的焦点为F,准线为l,C上的一点M在l上的射影为N,已知线段FN的垂直平分线方程为,则___________;___________.14.若在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列,现将数列进行构造,第次得到数列;第次得到数列;依次构造,第次得到数列;记,则(1)___________,(2)___________15.若关于的不等式恒成立,则实数的取值范围是______.16.在空间直角坐标系中,已知向量,则的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在等差数列中,,.(1)求数列的通项公式;(2)求数列的前n项和.18.(12分)已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为6.(1)求抛物线的方程;(2)若不过原点的直线与抛物线交于A、B两点,且,求证:直线过定点并求出定点坐标.19.(12分)已知椭圆:经过点为,且.(1)求椭圆的方程;(2)若直线与椭圆相切于点,与直线相交于点.已知点,且,求此时的值.20.(12分)已知直线,圆.(1)证明:直线l与圆C相交;(2)设l与C的两个交点分别为A、B,弦AB的中点为M,求点M的轨迹方程;(3)在(2)的条件下,设圆C在点A处的切线为,在点B处的切线为,与的交点为Q.试探究:当m变化时,点Q是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.21.(12分)已知为各项均为正数的等比数列,且,(1)求数列的通项公式;(2)令,求数列前n项和22.(10分)在中,角A、B、C的对边分别为a、b、c,已知,且.(1)求的面积;(2)若a、b、c成等差数列,求b的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】解方程即得解.【详解】由题得.故选:A【点睛】本题主要考查斜率的计算,意在考查学生对该知识的理解掌握水平.2、D【解析】分析可知点的轨迹是除去长轴端点的椭圆,求出、的值,结合椭圆焦点的位置可得出顶点的轨迹方程.【详解】由已知可得,,且、、三点不共线,故点的轨迹是以、为焦点,且除去长轴端点的椭圆,由已知可得,得,,则,因此,点的轨迹方程为.故选:D.3、A【解析】求出圆心到渐近线的距离,根据弦长建立关系即可求解.【详解】双曲线的渐近线方程为,即,则点到渐近线的距离为,因为弦长为,圆半径为,所以,即,因为,所以,则双曲线的离心率为.故选:A.4、B【解析】求出两直线的交点坐标,结合两点间的距离公式得到,进而可以求出结果.【详解】因为与的交点坐标为所以,当时,,所以的最大值是,故选:B.5、D【解析】先求出双曲线的渐近线方程,然后分别与直线联立,求出A、B两点的横坐标,再利用可求解.【详解】由双曲线方程可知其渐近线方程为:,当时,与联立,得,同理得,由,且可知,所以有,解得.故选:D6、D【解析】利用正态分布的计算公式:,【详解】且又故选:D7、B【解析】利用方差的定义即可解得.【详解】由方差的定义,,则,所以数据的方差为:.故选:B8、A【解析】利用条件可得数列为周期数列,再借助周期性计算得解.【详解】∵∴,,所以数列是以3为周期的周期数列,∴,故选:A.9、A【解析】根据椭圆的定义可得△AF1B的周长为4a,由题意求出a,结合离心率计算即可求出c,再求出b即可.【详解】由椭圆的定义知,△AF1B的周长为,又△AF1B的周长为4,则,,,,,所以方程为,故选:A.10、C【解析】设点在轴上方,由是等边三角形得直线斜率.又直线过点,故方程为.代入双曲线方程,得点的坐标为.同理可得,点的坐标为.故的面积为,选C.11、C【解析】由五角星的内角为,可知,又平分第三颗小星的一个角,过作轴平行线,则,即可求出直线的倾斜角.【详解】都为五角星的中心点,平分第三颗小星的一个角,又五角星的内角为,可知,过作轴平行线,则,所以直线的倾斜角为,故选:C【点睛】关键点点睛:本题考查直线倾斜角,解题的关键是通过做辅助线找到直线的倾斜角,通过几何关系求出倾斜角,考查学生的数形结合思想,属于基础题.12、A【解析】先令,求出,再当时,由,可得,然后两式相比,求出,从而可求出,进而可求得答案【详解】当时,,当时,由,可得,两式相除可得,所以,所以,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、①.2②.4【解析】设点,根据给定条件结合抛物线定义可得线段FN的中点及点M都在线段FN的垂直平分线,再列式计算作答.【详解】抛物线的焦点,准线l:,设点,则,线段FN的中点,由抛物线定义知:,即点M在线段FN的垂直平分线,因此,,解得,而,则有,,所以,.故答案为:2;4【点睛】结论点睛:抛物线方程中,字母p的几何意义是抛物线的焦点F到准线的距离,等于焦点到抛物线顶点的距离14、①.②.【解析】根据题意得到,再利用叠加法求解即可.【详解】由题知:,,,所以,,,……,,所以,,……,,即,所以.故答案为:;15、【解析】设由题可知,当时,可得适合题意,当时,可求函数的最小值即得,当时不合题意,即得.【详解】设,由题可知,∴,当时,,适合题意,所以,当时,令,则,此时时,,单调递减,,,单调递增,∴,又,∴,∴,即,解得,当时,时,,,故的值有正有负,不合题意;综上,实数的取值范围是.故答案为:.【点睛】关键点点睛:本题考查不等式恒成立求参数的取值范围,设由题可知,当时,利用导数可求函数的最小值,结合,可得,进而通过解,即得.16、【解析】由题知,进而根据向量数量积运算的坐标表示求解即可.【详解】解:因为向量,所以,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据已知条件求得,由此求得数列的通项公式.(2)令,分和去掉绝对值,根据等差数列的求和公式求得.【小问1详解】设等差数列的公差为,∵,,所以,所以,则.【小问2详解】令,解得,当时,,,当时,.18、(1)(2)证明见解析,定点坐标为(8,0).【解析】(1)根据抛物线的定义,即可求出结果;(2)由题意直线方程可设为,将其与抛物线方程联立,再将转化为,根据韦达定理,化简求解,即可求出定点.【小问1详解】解:抛物线的顶点在原点,焦点在轴上,且抛物线上有一点,设抛物线的方程为,到焦点的距离为6,即有点到准线的距离为6,即解得,即抛物线的标准方程为;【小问2详解】证明:由题意知直线不能与轴平行,故直线方程可设为,与抛物线联立得,消去得,设,则,则,,由,可得,所以,即,亦即,又,解得,所以直线方程为,易得直线过定点.19、(1);(2).【解析】(1)根据椭圆离心率公式,结合代入法进行求解即可;(2)根据直线与椭圆的位置关系求出点的坐标,结合平面向量垂直的性质进行求解即可.【详解】(1)由已知得,,而,解得,椭圆的方程为;(2)设直线方程为代入得,化简得由,得,,设,则,,则设,则,则,所以在轴存在使.,,所以在.20、(1)证明见解析;(2);(3)点Q恒在直线上,理由见解析.【解析】(1)求出直线过定点,得到在圆内部,故证明直线l与圆C相交;(2)设出点,利用垂直得到等量关系,整理后即为轨迹方程;(3)利用Q、A、B、C四点共圆,得到此圆方程,联立,求出相交弦的方程,即直线的方程,根据直线过的定点,得到,从而得到点Q恒在直线上.【小问1详解】证明:直线过定点,代入得:,故在圆内,故直线l与圆C相交;【小问2详解】圆的圆心为,设点,由垂径定理得:,即,化简得:,点M的轨迹方程为:【小问3详解】设点,由题意得:Q、A、B、C四点共圆,且圆的方程为:,即,与圆C的方程联立,消去二次项得:,即为直线的方程,因为直线过定点,所以,解得:,所以当m变化时,点Q恒在直线上.【点睛】本题的第三问是稍有难度的,处理方法是根据四点共圆,直径的端点坐标,求出此圆的方程,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论