青海省西宁市二十一中2026届高二上数学期末综合测试试题含解析_第1页
青海省西宁市二十一中2026届高二上数学期末综合测试试题含解析_第2页
青海省西宁市二十一中2026届高二上数学期末综合测试试题含解析_第3页
青海省西宁市二十一中2026届高二上数学期末综合测试试题含解析_第4页
青海省西宁市二十一中2026届高二上数学期末综合测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青海省西宁市二十一中2026届高二上数学期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆与圆,则两圆的位置关系是()A.外切 B.内切C.相交 D.相离2.第24届冬季奥林匹克运动会,将在2022年2月4日在中华人民共和国北京市和张家口市联合举行.这是中国历史上第一次举办冬季奥运会,北京成为奥运史上第一个举办夏季奥林匹克运动会和冬季奥林匹克运动会的城市.同时中国也成为第一个实现奥运“全满贯”(先后举办奥运会、残奥会、青奥会、冬奥会、冬残奥会)国家.根据规划,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是离心率相同的椭圆,若由外层椭圆长轴一端点和短轴一端点分别向内层椭圆引切线,(如图),且两切线斜率之积等于,则椭圆的离心率为()A. B.C. D.3.已知f(x)是定义在R上的函数,且f(2)=2,,则f(x)>x的解集是()A. B.C. D.4.记等差数列的前n项和为,若,,则等于()A.5 B.31C.38 D.415.为了防控新冠病毒肺炎疫情,某市疾控中心检测人员对外来入市人员进行核酸检测,人员甲、乙均被检测.设命题为“甲核酸检测结果为阴性”,命题为“乙核酸检测结果为阴性”,则命题“至少有一位人员核酸检测结果不是阴性”可表示为()A. B.C. D.6.如图,用4种不同的颜色对A,B,C,D四个区域涂色,要求相邻的两个区域不能用同一种颜色,则不同的涂色方法有()A.24种 B.48种C.72种 D.96种7.如图,,是平面上两点,且,图中的一系列圆是圆心分别为,的两组同心圆,每组同心圆的半径分别是1,2,3,…,A,B,C,D,E是图中两组同心圆的部分公共点.若点A在以,为焦点的椭圆M上,则()A.点B和C都在椭圆M上 B.点C和D都在椭圆M上C.点D和E都在椭圆M上 D.点E和B都在椭圆M上8.在等比数列中,,,则等于A. B.C. D.或9.在等差数列中,,且,,,构成等比数列,则公差()A.0或2 B.2C.0 D.0或10.已知抛物线,过抛物线的焦点作轴的垂线,与抛物线交于、两点,点的坐标为,且为直角三角形,则以直线为准线的抛物线的标准方程为()A. B.C. D.11.设双曲线:(,)的右顶点为,右焦点为,为双曲线在第二象限上的点,直线交双曲线于另一个点(为坐标原点),若直线平分线段,则双曲线的离心率为()A. B.C. D.12.已知双曲线的两个焦点,,是双曲线上一点,且,,则双曲线的标准方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的导函数为,,,则的解集为___________.14.在平面直角坐标系中,若抛物线上的点P到该抛物线焦点的距离为5,则点P的纵坐标为_______15.在某项测量中,测量结果ξ服从正态分布(),若ξ在内取值的概率为0.4,则ξ在内取值的概率为______16.根据某市有关统计公报显示,随着“一带一路”经贸合作持续深化,该市对外贸易近几年持续繁荣,2017年至2020年每年进口总额x(单位:千亿元)和出口总额y(单位:千亿元)之间一组数据如下:2017年2018年2019年2020年x1.82.22.63.0y2.02.83.24.0若每年的进出口总额x,y满足线性相关关系,则______;若计划2022年出口总额达到5千亿元,预计该年进口总额为______千亿元三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求的单调区间;(2)讨论的零点个数.18.(12分)已知双曲线C的方程为(),离心率为.(1)求双曲线的标准方程;(2)过的直线交曲线于两点,求的取值范围.19.(12分)已知等差数列的前和为,数列是公比为2的等比数列,且,(1)求数列和数列的通项公式;(2)现由数列与按照下列方式构造成新的数列①将数列中的项去掉数列中的项,按原来的顺序构成新数列;②数列与中的所有项分别构成集合与,将集合中的所有元素从小到大依次排列构成一个新数列;在以上两个条件中任选一个做为已知条件,求数列的前30项和.20.(12分)已知点A(1,2)在抛物线C∶上,过点A作两条直线分别交抛物线于点D,E,直线AD,AE的斜率分别为kAD,kAE,若直线DE过点P(-1,-2)(1)求抛物线C的方程;(2)求直线AD,AE的斜率之积.21.(12分)已知双曲线的左,右焦点为,离心率为.(1)求双曲线C的渐近线方程;(2)过作斜率为k的直线l分别交双曲线的两条渐近线于A,B两点,若,求k的值.22.(10分)已知函数在处的切线与轴平行(1)求的值;(2)判断在上零点的个数,并说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求得两圆的圆心和半径,再根据圆心距与半径之和半径之差的关系,即可判断位置关系.【详解】对圆,其圆心,半径;对圆,其圆心,半径;又,故两圆外切.故选:A.2、B【解析】分别设内外层椭圆方程为、,进而设切线、分别为、,联立方程组整理并结合求、关于a、b、m的关系式,再结合已知得到a、b的齐次方程求离心率即可.【详解】若内层椭圆方程为,由离心率相同,可设外层椭圆方程为,∴,设切线为,切线为,∴,整理得,由知:,整理得,同理,,可得,∴,即,故.故选:B.【点睛】关键点点睛:根据内外椭圆的离心率相同设椭圆方程,并写出切线方程,联立方程结合及已知条件,得到椭圆参数的齐次方程求离心率.3、D【解析】构造,结合已知有在R上递增且,原不等式等价于,利用单调性求解集.【详解】令,由题设知:,即在R上递增,又,所以f(x)>x等价于,即.故选:D4、A【解析】设等差数列的公差为d,首先根据题意得到,再解方程组即可得到答案.【详解】解:设等差数列的公差为d,由题知:,解得.故选:A.5、D【解析】表示出和,直接判断即可.【详解】命题为“甲核酸检测结果为阴性”,则命题为“甲核酸检测结果不是阴性”;命题为“乙核酸检测结果为阴性”,则命题为“乙核酸检测结果不是阴性”.故命题“至少有一位人员核酸检测结果不是阴性”可表示为.故选D.6、B【解析】按涂色顺序进行分四步,根据分步乘法计数原理可得解.【详解】按涂色顺序进行分四步:涂A部分时,有4种涂法;涂B部分时,有3种涂法;涂C部分时,有2种涂法;涂D部分时,有2种涂法.由分步乘法计数原理,得不同的涂色方法共有种.故选:B.7、C【解析】根据椭圆的定义判断即可求解.【详解】因为,所以椭圆M中,因为,,,,所以D,E在椭圆M上.故选:C8、D【解析】∵为等比数列,∴,又∴为的两个不等实根,∴∴或∴故选D9、A【解析】根据等比中项的性质和等差数列的通项公式建立方程,可解得公差d得选项.【详解】解:因为在等差数列中,,且,,,构成等比数列,所以,即,所以,解得或,故选:A.10、B【解析】设点位于第一象限,求得直线的方程,可得出点的坐标,由抛物线的对称性可得出,进而可得出直线的斜率为,利用斜率公式求得的值,由此可得出以直线为准线的抛物线的标准方程.【详解】设点位于第一象限,直线的方程为,联立,可得,所以,点.为等腰直角三角形,由抛物线的对称性可得出,则直线的斜率为,即,解得.因此,以直线为准线的抛物线的标准方程为.故选:B.【点睛】本题考查抛物线标准方程的求解,考查计算能力,属于中等题.11、A【解析】由给定条件写出点A,F坐标,设出点B的坐标,求出线段FC的中点坐标,由三点共线列式计算即得.【详解】令双曲线的半焦距为c,点,设,由双曲线对称性得,线段FC的中点,因直线平分线段,即点D,A,B共线,于是有,即,即,离心率.故选:A12、D【解析】根据条件设,,由条件求得,即可求得双曲线方程.【详解】设,则由已知得,,又,,又,,双曲线的标准方程为.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据,构造函数,利用其单调性求解.【详解】因为,所以,令,则,,所以是减函数,又,即,,所以,所以,则的解集为故答案为:14、4【解析】根据抛物线的定义,列出方程,即可得答案.【详解】由题意:抛物线的准线为,设点P的纵坐标为,由抛物线定义可得,解得,所以点P的纵坐标为4.故答案为:415、4##【解析】根据正态分布曲线的对称性求解【详解】因为ξ服从正态分布(),即正态分布曲线的对称轴为,根据正态分布曲线的对称性,可知ξ在与取值的概率相同,所以ξ在内取值的概率为0.4.故答案为:0.416、①.1.6;②.3.65.【解析】根据给定数表求出样本中心点,代入即可求得,取可求出该年进口总额.详解】由数表得:,,因此,回归直线过点,由,解得,此时,,当时,即,解得,所以,预计该年进口总额为千亿元.故答案为:1.6;3.65三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递增区间是和,单调递减区间是(2)时,有1个零点;或时,有2个零点;时,有3个零点.【解析】(1)求解函数的导数,再运用导数求解函数的单调区间即可;(2)根据导数分析原函数的极值,进而讨论其零点个数.【详解】(1)因为,所以由,得或;由,得.故单调递增区间是和,单调递减区间是.(2)由(1)可知的极小值是,极大值是.①当时,方程有且仅有1个实根,即有1个零点;②当时,方程有2个不同实根,即有2个零点;③当时,方程有3个不同实根,即有3个零点;④当时,方程有2个不同实根,即有2个零点;⑤当时,方程有1个实根,即有1个零点.综上,当或时,有1个零点;当或时,有2个零点;当时,有3个零点.18、(1);(2).【解析】(1)根据题意,结合离心率易,知双曲线为等轴双曲线,进而可求解;(2)根据题意,分直线斜率否存在两种情形讨论,结合设而不求法以及向量数量积的坐标公式,即可求解.【小问1详解】根据题意,由离心率为,知双曲线是等轴双曲线,所以,故双曲线的标准方程为.【小问2详解】当直线斜率存在时,设直线的方程为,则由消去,得到,∵直线与双曲线交于M、N两点,,解得.设,则有,,因此,∵,∴且,故或,故;②当直线的斜率不存在时,此时,易知,,故.综上所述,所求的取值范围是.19、(1),(2)答案见解析【解析】(1)由题意可直接得到等比数列的通项公式;求出等差数列的公差,即可得到其通项公式;(2)若选①,则可确定由数列前33项的和减去,即可得答案;若选②,则可确定由数列前27项的和加上,即可得答案.【小问1详解】因为数列为等比数列,且,所以.又因,所以,又,则,故等差数列的通项公式为.【小问2详解】因为,,所以,而若选①因为在数列前30项内,不在在数列前30项内.,则数列前30项和为:=1632.若选②因为在数列前30项内,不在在数列前30项内.,则数列前30项和为:=1203.20、(1)(2)【解析】(1)代入点即可求得抛物线方程;(2)联立方程后利用韦达定理求出,,,,然后代入即可求得斜率的积.【小问1详解】解:点A(1,2)在抛物线C∶上故【小问2详解】设直线方程为:联立方程,整理得:由题意及韦达定理可得:,21、(1)(2)【解析】(1)由离心率可得双曲线的渐近线方程;(2)设,则的中点为,由,可得,然后的方程与双曲线的渐近线方程联立,利用韦达定理可得答案.【小问1详解】设,则,又,所以,得,所以双曲线的渐近线方程为.【小问2详解】由已知直线的倾斜角不是直角,,设,则的中点为,,由,可知,所以,即,因为的方程为,双曲线的渐近线方程可写为,由消去y,得,所以,,所以,因为,所以,即.22、(1)0(2)f(x)在(0,π)上有且只有一个零点,理由见解析【解析】(1)利用导数的几何意义求解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论