版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省开远市第二中学2026届数学高一上期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图象大致为()A. B.C. D.2.已知点,,则直线的倾斜角为()A. B.C. D.3.若,则等于A. B.C. D.4.已知实数满足,则函数的零点在下列哪个区间内A. B.C. D.5.已知函数的部分图象如图所示,下列说法错误的是()A.B.f(x)的图象关于直线对称C.f(x)在[-,-]上单调递减D.该图象向右平移个单位可得的图象6.已知一组数据为20,30,40,50,50,50,70,80,其平均数、第60百分位数和众数的大小关系是()A.平均数=第60百分位数>众数 B.平均数<第60百分位数=众数C.第60百分位数=众数<平均数 D.平均数=第60百分位数=众数7.O为正方体底面ABCD的中心,则直线与的夹角为A. B.C. D.8.已知函数,则()A.当且仅当时,有最小值为B.当且仅当时,有最小值为C.当且仅当时,有最大值为D.当且仅当时,有最大值为9.已知实数满足,则函数的零点所在的区间是()A. B.C. D.10.若点、、在同一直线上,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,,的图象如下图所示,则,,的大小关系为__________.(用“”号连接)12.=________13.若函数与函数的最小正周期相同,则实数______14.函数在一个周期内图象如图所示,此函数的解析式为___________.15.过正方体的顶点作直线,使与棱、、所成的角都相等,这样的直线可以作_________条.16.已知函数部分图象如图所示,则函数的解析式为:____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到应用.假定在水流稳定的情况下,简车上的每一个盛水筒都做匀速圆周运动.如图,将简车抽象为一个几何图形(圆),筒车半径为4,筒车转轮的中心O到水面的距离为2,筒车每分钟沿逆时针方向转动4圈.规定:盛水筒M对应的点P从水中浮现(即P0时的位置)时开始计算时间,且以水轮的圆心O为坐标原点,过点O的水平直线为x轴建立平面直角坐标系.设盛水筒M从点P0运动到点P时所经过的时间为t(单位:),且此时点P距离水面的高度为h(单位:)(在水面下则h为负数).(1)求点P距离水面的高度为h关于时间为t的函数解析式;(2)求点P第一次到达最高点需要的时间(单位:).18.已知函数f(x)=ax2-4ax+1+b(a>0)的定义域为[2,3],值域为[1,4];设(1)求a,b的值;(2)若不等式g(2x)-k•2x≥0在x∈[1,2]上恒成立,求实数k的取值范围19.已知函数是定义域为R的奇函数.(1)求t的值,并写出的解析式;(2)判断在R上的单调性,并用定义证明;(3)若函数在上的最小值为,求k的值.20.设函数.(1)当时,求函数最小值;(2)若函数的零点都在区间内,求的取值范围.21.已知函数在一个周期内的图象如图所示.(1)求函数的解析式;(2)若存在,使得关于的不等式成立,求实数的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由函数的奇偶性质可知函数为偶函数,再结合时函数的符号即可得答案.【详解】解:由题知函数的定义域为,关于原点对称,,所以函数为偶函数,其图像关于轴对称,故排除B,D,当时,,故排除C,得A为正确选项.故选:A2、B【解析】由两点求斜率公式可得AB所在直线当斜率,再由斜率等于倾斜角的正切值求解【详解】解:∵直线过点,,∴,设AB的倾斜角为α(0°≤α<180°),则tanα=1,即α=45°故选B【点睛】本题考查直线的倾斜角,考查直线倾斜角与斜率的关系,是基础题3、B【解析】,.考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系第II卷(非选择题4、B【解析】由3a=5可得a值,分析函数为增函数,依次分析f(﹣2)、f(﹣1)、f(0)的值,由函数零点存在性定理得答案【详解】根据题意,实数a满足3a=5,则a=log35>1,则函数为增函数,且f(﹣2)=(log35)﹣2+2×(﹣2)﹣log53<0,f(﹣1)=(log35)﹣1+2×(﹣1)﹣log53=﹣2<0,f(0)=(log35)0﹣log53=1﹣log53>0,由函数零点存在性可知函数f(x)的零点在区间(﹣1,0)上,故选B【点睛】本题考查函数零点存在性定理的应用,分析函数的单调性是关键5、C【解析】先根据图像求出即可判断A,利用正弦函数的对称轴及单调性即可判断BC,通过平移变换即可判断D.【详解】根据函数的部分图象,可得所以,故A正确;利用五点法作图,可得,可得,所以,令x,求得,为最小值,故函数的图象关于直线对称,故B正确:当时,,函数f(x)没有单调性,故C错误;把f(x)的图象向右平移个单位可得的图象,故D正确故选:C.6、B【解析】从数据为20,30,40,50,50,50,70,80中计算出平均数、第60百分位数和众数,进行比较即可.【详解】解:平均数为,,第5个数50即为第60百分位数.又众数为50,它们的大小关系是平均数第60百分位数众数.故选:B.7、D【解析】推导出A1C1⊥BD,A1C1⊥DD1,从而D1O⊂平面BDD1,由此得到A1C1⊥D1O【详解】∵O为正方体ABCD﹣A1B1C1D1底面ABCD的中心,∴A1C1⊥BD,A1C1⊥DD1,∵BD∩DD1=D,∴A1C1⊥平面BDD1,∵D1O⊂平面BDD1,∴A1C1⊥D1O故答案为:D【点睛】本题考查与已知直线垂直的直线的判断,是中档题,做题时要认真审题,注意线面垂直的性质的合理运用8、A【解析】由基本不等式可得答案.【详解】因为,所以,当且仅当即时等号成立.故选:A.9、B【解析】由已知可得,结合零点存在定理可判断零点所在区间.【详解】由已知得,所以,又,,,,所以零点所在区间为,故选:B.10、A【解析】利用结合斜率公式可求得实数的值.【详解】因为、、在同一直线上,则,即,解得.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】函数y=ax,y=xb,y=logcx的图象如图所示,由指数函数y=ax,x=2时,y∈(2,3)对数函数y=logcx,x=2,y∈(0,1);幂函数y=xb,x=2,y∈(1,2);可得a∈(1,2),b∈(0,1),c∈(2,+∞)可得b<a<c故答案为b<a<c12、【解析】利用两角差的正切公式直接求值即可.【详解】=故答案为【点睛】本题主要考查两角差的正切公式,特殊角的三角函数值,属于基础题.13、【解析】求出两个函数的周期,利用周期相等,推出a的值【详解】:函数的周期是;函数的最小正周期是:;因为周期相同,所以,解得故答案为【点睛】本题是基础题,考查三角函数的周期的求法,考查计算能力14、【解析】根据所给的图象,可得到,周期的值,进而得到,根据函数的图象过点可求出的值,得到三角函数的解析式【详解】由图象可知,,,由,三角函数的解析式是函数的图象过,,把点的坐标代入三角函数的解析式,,,又,,三角函数的解析式是.故答案为:.15、【解析】将小正方体扩展成4个小正方体,根据直线夹角的定义即可判断出符合条件的条数【详解】解:设ABCD﹣A1B1C1D1边长为1第一条:AC1是满足条件的直线;第二条:延长C1D1到C1且D1C2=1,AC2是满足条件的直线;第三条:延长C1B1到C3且B1C3=1,AC3是满足条件的直线;第四条:延长C1A1到C4且C4A1,AC4是满足条件的直线故答案为4【点睛】本题考查满足条件的直线条数的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,考查分类与整合思想,是基础题16、【解析】先根据图象得到振幅和周期,即求得,再根据图象过,求得,得到解析式.【详解】由图象可知,,故,即.又由图象过,故,解得,而,故,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(t≥0)(2)【解析】(1)根据题意,建立函数关系式;(2)直接解方程即可求解.【小问1详解】盛水筒M从点P0运动到点P时所经过的时间为t,则以Ox为始边,OP为终边的角为,故P点的纵坐标为,则点离水面的高度,(t≥0).【小问2详解】令,得,得,,得,,因为点P第一次到达最高点,所以,所以.18、(1);(2)【解析】(1)根据函数f(x)=ax2-4ax+1+b(a>0)的定义域为[2,3],值域为[1,4],其图象对称轴为直线x=2,且g(x)的最小值为1,最大值为4,列出方程可得实数a,b的值;(2)若不等式g(2x)-k•2x≥0在x∈[1,2]上恒成立,分离变量k,在x∈[1,2]上恒成立,进而得到实数k的取值范围【详解】(1)∵函数f(x)=ax2-4ax+1+b(a>0)其图象对称轴为直线x=2,函数的定义域为[2,3],值域为[1,4],∴,解得:a=3,b=12;(2)由(Ⅰ)得:f(x)=3x2-12x+13,g(x)==若不等式g(2x)-k•2x≥0在x∈[1,2]上恒成立,则k≤()2-2()+1在x∈[1,2]上恒成立,2x∈[2,4],∈[,],当=,即x=1时,()2-2()+1取最小值,故k≤【点睛】本题考查二次函数在闭区间上的最值,考查函数恒成立问题问题,考查数形结合与等价转化、函数与方程思想的综合应用,是中档题19、(1)或,;(2)R上单调递增,证明见解析;(3)【解析】(1)是定义域为R的奇函数,利用奇函数的必要条件,求出的值,进而求出,验证是否为奇函数;(2)可判断在上为增函数,用函数的单调性定义加以证明,取两个不等的自变量,对应函数值做差,因式分解,判断函数值差的符号,即可证明结论;(3)由,换元令,,由(2)得,,根据条件转化为在最小值为-2,对二次函数配方,求出对称轴,分类讨论求出最小值,即可求解【详解】解:(1)因为是定义域为R的奇函数,所以,即,解得或,可知,此时满足,所以.(2)在R上单调递增.证明如下:设,则.因为,所以,所以,可得.因为当时,有,所以R单调递增.(3)由(1)可知,令,则,因为是增函数,且,所以.因为在上的最小值为,所以在上的最小值为.因为,所以当时,,解得或(舍去);当时,,不合题意,舍去.综上可知,.【点睛】本题考查函数的奇偶性应用和单调性的证明,考查复合函数的最值,用换元方法,将问题化归为二次函数函数的最值,属于较难题.20、(1);(2)【解析】(1)分类讨论得;(2)由题意,得到等价不等式,解得的取值范围是试题解析:(1)∵函数.当,即时,;当,即时,;当,即时,.综上,(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 下料工春节假期安全告知书
- 2025年化工产业安全生产管理指南
- 高尔夫球童春节假期安全告知书
- 工程测量员春节假期安全告知书
- 糖尿病中医护理课件
- 2025年湖南省中考道德与法治真题
- 临床检验士的试题及答案2025年版
- 年标准员专业管理实务考试题库附参考答案【夺分金卷】
- 校医面试题目及答案
- 2025年银行招聘练习题及参考答案详解
- 湖北省2024-2025学年高一上学期期末联考数学试卷 含解析
- 农业银行房贷合同范本
- 成体馆加盟协议书范文范本集
- DB34T 4506-2023 通督调神针刺疗法应用指南
- 02-输电线路各阶段设计深度要求
- 《认识时钟》大班数学教案
- T-CI 178-2023 高大边坡稳定安全智能监测预警技术规范
- THHPA 001-2024 盆底康复管理质量评价指标体系
- 伤口的美容缝合减少瘢痕的形成
- MSOP(测量标准作业规范)测量SOP
- 颅鼻眶沟通恶性肿瘤的治疗及护理
评论
0/150
提交评论