2026届重庆市万州三中高一数学第一学期期末教学质量检测试题含解析_第1页
2026届重庆市万州三中高一数学第一学期期末教学质量检测试题含解析_第2页
2026届重庆市万州三中高一数学第一学期期末教学质量检测试题含解析_第3页
2026届重庆市万州三中高一数学第一学期期末教学质量检测试题含解析_第4页
2026届重庆市万州三中高一数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届重庆市万州三中高一数学第一学期期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数在区间上的图象可能是()A. B.C. D.2.已知函数恰有2个零点,则实数a取值范围是()A. B.C. D.3.如图,PO是三棱锥P-ABC底面ABC的垂线,垂足为O①若PA⊥BC,PB⊥AC,则点O是△ABC的垂心;②若PA=PB=PC,则点O是△ABC的外心;③若∠PAB=∠PAC,∠PBA=∠PBC,则点O是△ABC的内心;④过点P分别做边AB,BC,AC的垂线,垂足分别为E,F,G,若PE=PF=PG,则点O是△ABC的重心以上推断正确的个数是()A.1 B.2C.3 D.44.已知,,,则a,b,c的大小关系为()A. B.C. D.5.Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数(的单位:天)的Logistic模型:其中为最大确诊病例数.当时,标志着已初步遏制疫情,则约为()A.60 B.65C.66 D.696.历史上数学计算方面的三大发明是阿拉伯数、十进制和对数,其中对数的发明,大大缩短了计算时间,为人类研究科学和了解自然起了重大作用,对数运算对估算“天文数字”具有独特优势.已知,,则的估算值为()A. B.C. D.7.已知第二象限角的终边上有异于原点的两点,,且,若,则的最小值为()A. B.3C. D.48.在①;②;③;④上述四个关系中,错误的个数是()A.1个 B.2个C.3个 D.4个9.已知,则直线通过()象限A.第一、二、三 B.第一、二、四C.第一、三、四 D.第二、三、四10.函数的零点所在的区间为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.命题“”的否定是________________.12.若,,且,则的最小值为__________13.函数的图象的对称中心的坐标为___________.14.若函数在区间上为减函数,则实数的取值范围为________15.函数的值域是__________16.函数的最大值为().三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设为实数,函数(1)当时,求在区间上的最大值;(2)设函数为在区间上的最大值,求的解析式;(3)求的最小值.18.在①函数;②函数;③函数的图象向右平移个单位长度得到的图象,的图象关于原点对称;这三个条件中任选一个作为已知条件,补充在下面的问题中,然后解答补充完整的题已知______(只需填序号),函数的图象相邻两条对称轴之间的距离为.(1)求函数的解析式;(2)求函数的单调递减区间及其在上的最值注:若选择多个条件分别解答,则按第一个解答计分.19.已知函数(Ⅰ)求在区间上的单调递增区间;(Ⅱ)若,,求的值20.已知定义域为的函数是奇函数.(1)求的值;(2)用函数单调性的定义证明在上是减函数.21.已知函数,(1)若,解不等式;(2)若函数恰有三个零点,,,求的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】首先判断函数的奇偶性,再根据特殊值判断即可;【详解】解:∵,∴是偶函数,函数图象关于轴对称,排除A,B选项;∵,∴在上不单调,排除D选项故选:C2、D【解析】由在区间上单调递减,分类讨论,,三种情况,根据零点个数求出实数a的取值范围.【详解】函数在区间上单调递减,且方程的两根为.若时,由解得或,满足题意.若时,,,当时,,即函数在区间上只有一个零点,因为函数恰有2个零点,所以且.当时,,,此时函数有两个零点,满足题意.综上,故选:D3、C【解析】①由题意得出AO⊥BC,BO⊥BC,点O是△ABC的垂心;②若PA=PB=PC,则AO=BO=CO,点O是△ABC的外心;③由题意得出AO是∠BAC的平分线,BO是∠ABC的平分线,O是△ABC的内心;④若PE=PF=PG,则OE=OF=OG,点O是△ABC的内心【详解】对于①,PO⊥底面ABC,∴PO⊥BC,又PA⊥BC,∴BC⊥平面PAO,∴AO⊥BC;同理PB⊥AC,得出BO⊥BC,∴点O是△ABC的垂心,①正确;对于②,若PA=PB=PC,由此推出Rt△PAO≌Rt△PBO≌Rt△PCO,∴AO=BO=CO,点O是△ABC的外心,②正确;对于③,若∠PAB=∠PAC,且PO⊥底面ABC,则AO是∠BAC的平分线,同理∠PBA=∠PBC时BO是∠ABC平分线,∴点O是△ABC的内心,③正确;对于④,过点P分别做边AB,BC,AC的垂线,垂足分别为E,F,G,若PE=PF=PG,则OE=OF=OG,点O是△ABC的内心,④错误综上,正确的命题个数是3故选C【点睛】本题主要考查了空间中的直线与平面的垂直关系应用问题,是中档题4、D【解析】与中间值1和2比较.【详解】,,,所以故选:D.【点睛】本题考查幂与对数的大小比较,在比较对数和幂的大小时,能化为同底数的化为同底数,再利用函数的单调性比较,否则可借助中间值比较,如0,1,2等等.5、B【解析】由已知可得方程,解出即可【详解】解:由已知可得,解得,两边取对数有,解得.故选:B6、C【解析】令,化为指数式即可得出.【详解】令,则,∴,即的估算值为.故选:C.7、B【解析】根据,得到,从而得到,进而得到,再利用“1”的代换以及基本不等式求解.【详解】解:因为,所以,又第二象限角的终边上有异于原点的两点,,所以,则,因为,所以,所以,当且仅当,即时,等号成立,故选:B8、B【解析】根据元素与集合的关系,集合与集合的关系以及表示符号,及规定空集是任何非空集合的真子集,即可找出错误的个数【详解】解:“”表示集合与集合间的关系,所以①错误;集合中元素是数,不是集合元素,所以②错误;根据子集的定义,{0,1,2}是自身的子集,空集是任何非空集合的真子集,所以③④正确;所表示的关系中,错误的个数是2故选:B9、A【解析】根据判断、、的正负号,即可判断直线通过的象限【详解】因为,所以,①若则,,直线通过第一、二、三象限②若则,,直线通过第一、二、三象限【点睛】本题考查直线,作为选择题10、B【解析】函数的零点所在区间需满足的条件是函数在区间端点的函数值符号相反,函数是连续函数【详解】解:函数是连续增函数,,,即,函数的零点所在区间是,故选:【点睛】本题考查函数的零点的判定定理,连续函数在某个区间存在零点的条件是函数在区间端点处的函数值异号,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】根据含有一个量词的命题的否定可得结果【详解】由含有一个量词的命题的否定可得,命题“”的否定为“”故答案为【点睛】对于含有量词的命题的否定要注意两点:一是要改换量词,把特称(全称)量词改为全称(特称)量词;二是把命题进行否定.本题考查特称命题的否定,属于简单题12、##【解析】运用均值不等式中“1”的妙用即可求解.【详解】解:因为,,且,所以,当且仅当时等号成立,故答案为:.13、【解析】利用正切函数的对称中心求解即可.【详解】令=(),得(),∴对称中心的坐标为故答案:()14、【解析】分类讨论,时根据二次函数的性质求解【详解】时,满足题意;时,,解得,综上,故答案为:15、【解析】利用换元法,将变为,然后利用三角恒等变换,求三角函数的值域,可得答案.【详解】由,得,可设,故,不妨取为锐角,而,时取最大值),,故函数的值域为,故答案为:.16、【解析】利用可求最大值.【详解】因为,即,,取到最小值;所以函数的最大值为.故答案为:.【点睛】本题主要考查三角函数的最值问题,借助正弦函数的值域能方便求解,侧重考查数学抽象的核心素养.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0(2)t(a)(3)12﹣8【解析】(1)a=1时,函数f(x)=(x﹣1)2﹣1,根据二次函数的性质即可求出它的值域;(2)化简g(x)=|f(x)|=|x(x﹣2a)|,讨论确定函数的单调性,求出最大值,得出t(a)的解析式;(3)分别求出各段函数的最小值(或下确界),比较各个最小值,其中的最小值,即为求t(a)的最小值【详解】(1)a=1时,f(x)=x2﹣2x=(x﹣1)2﹣1,∵x∈[0,2],∴﹣1≤x﹣1≤1,∴﹣1≤(x﹣1)2﹣1≤0,在区间上的最大值为0;(2)g(x)=|f(x)|=|x(x﹣2a)|,①当a≤0时,g(x)=x2﹣2ax在[0,2]上增函数,故t(a)=g(2)=4﹣4a;②当0<a<1时,g(x)在[0,a)上是增函数,在[a,2a)上是减函数,在[2a,2]上是增函数,而g(a)=a2,g(2)=4﹣4a,g(a)﹣g(2)=a2+4a﹣4=(a﹣22)(a+22),故当0<a<22时,t(a)=g(2)=4﹣4a,当22≤a<1时,t(a)=g(a)=a2,③当1≤a<2时,g(x)在[0,a)上是增函数,在[a,2]上是减函数,故t(a)=g(a)=a2,④当a≥2时,g(x)在[0,2]上是增函数,t(a)=g(2)=4a﹣4,故t(a);(3)由(2)知,当a<22时,t(a)=4﹣2a是单调减函数,,无最小值;当时,t(a)=a2是单调增函数,且t(a)的最小值为t(22)=12﹣8;当时,t(a)=4a﹣4是单调增函数,最小值为t(2)=4;比较得t(a)的最小值为t(22)=12﹣8【点睛】本题主要考查了二次函数在闭区间上的最值问题的解法,含参以及含绝对值的二次函数在闭区间上的最值问题和分段函数的最值问题的解法,意在考查学生的分类讨论思想意识以及数学运算能力18、(1)条件选择见解析,(2)单调递减区间为,最小值为,最大值为2【解析】(1)选条件①:利用同角三角函数的关系式以及两角和的正弦公式和倍角公式,将化为只含一个三角函数形式,根据最小正周期求得,即可得答案;选条件②:利用两角和的正弦公式以及倍角公式,将化为只含一个三角函数形式,根据最小正周期求得,即可得答案;选条件③,先求得,利用三角函数图象的平移变换规律,可得到g(x)的表达式,根据其性质求得,即得答案;(2)根据正弦函数的单调性即可求得答案,再由,确定,根据三角函数性质即可求得答案.【小问1详解】选条件①:法一:又由函数的图象相邻两条对称轴之间的距离为,可知函数最小正周期,∴,∴选条件②:,又最小正周期,∴,∴选条件③:由题意可知,最小正周期,∴,∴,∴,又函数的图象关于原点对称,∴,∵,∴∴【小问2详解】由(1)知,由,解得,∴函数单调递减区间为由,从而,故在区间上的最小值为,最大值为2.19、(Ⅰ),;(Ⅱ).【解析】(Ⅰ)利用三角恒等变换思想化简函数的解析式为,求得函数在上的单调递增区间,与取交集可得出结果;(Ⅱ)由可得出,利用同角三角函数的基本关系可求得的值,利用两角和的正弦公式可求得的值详解】(Ⅰ)令,,得,令,得;令,得.因此,函数在区间上的单调递增区间为,;(Ⅱ)由,得,,又,,因此,【点睛】本题考查正弦型函数的单调区间的求解,同时也考查了利用两角和的正弦公式求值,考查计算能力,属于中等题.20、(1)(2)详见解析【解析】(1)既可以利用奇函数的定义求得的值,也可以利用在处有意义的奇函数的性质求,但要注意证明该值使得函数是奇函数.(2)按照函数单调性定义法证明步骤证明即可.【详解】解:(1)解法一:因为函数是定义在上的奇函数,所以,即,整理得,所以,所以.解法二:因为函数是定义在上的奇函数,所以,即,解得.当时,.因为,所以当时,函数是定义域为的奇函数.(2)由(1)得.对于任意的,且,则.因为,所以,则,而,所以,即.所以函数在上是减函数.【点睛】已知函数奇偶性求参数值的方法有:(1)利用定义(偶函数)或(奇函数)求解.(2)利用性质:如果为奇函数,且在处有意义,则有;(3)结合定义利用特殊值法,求出参数值.定义法证明单调性:(1)取值;(2)作差(作商);(3)变形;(4)定号(与1比较);(5)下结论.21、(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论