福建省八县一中2026届高二数学第一学期期末综合测试模拟试题含解析_第1页
福建省八县一中2026届高二数学第一学期期末综合测试模拟试题含解析_第2页
福建省八县一中2026届高二数学第一学期期末综合测试模拟试题含解析_第3页
福建省八县一中2026届高二数学第一学期期末综合测试模拟试题含解析_第4页
福建省八县一中2026届高二数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省八县一中2026届高二数学第一学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数在上可导,且,则与的大小关系为A. B.C. D.不确定2.设抛物线的焦点为,准线与轴的交点为,是上一点,若,则()A. B.C. D.3.魏晋时期数学家刘徽首创割圆术,他在《九章算术》方田章圆田术中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”这是注述中所用的割圆术是一种无限与有限的转化过程,比如在正数中的“”代表无限次重复,设,则可以利用方程求得,类似地可得到正数()A.2 B.3C. D.4.双曲线的左焦点到其渐近线的距离是()A. B.C. D.5.已知,,则()A. B.C. D.6.展开式中第3项的二项式系数为()A.6 B.C.24 D.7.直线的倾斜角为()A.60° B.30°C.120° D.150°8.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线,O为坐标原点,一条平行于x轴的光线从点射入,经过C上的点A反射后,再经C上另一点B反射后,沿直线射出,经过点N.下列说法正确的是()A.若,则 B.若,则平分C.若,则 D.若,延长AO交直线于点D,则D,B,N三点共线9.抛物线上有两个点,焦点,已知,则线段的中点到轴的距离是()A.1 B.C.2 D.10.函数在上的最小值为()A. B.4C. D.11.已知等差数列,,,则数列的前项和为()A. B.C. D.12.已知抛物线的焦点恰为双曲线的一个顶点,的另一顶点为,与在第一象限内的交点为,若,则直线的斜率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点,,,则外接圆的圆心坐标为________14.双曲线的焦距为____________15.已知圆被轴截得的弦长为4,被轴分成两部分的弧长之比为1∶2,则圆心的轨迹方程为______,若点,,则周长的最小值为______16.方程表示双曲线,则实数k的取值范围是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列是公比为2的等比数列,是与的等差中项(1)求数列的通项公式;(2)若,求数列的前n项和18.(12分)已知函数,求函数在上的最大值与最小值.19.(12分)已知双曲线的渐近线方程为,且过点(1)求双曲线的方程;(2)过双曲线的一个焦点作斜率为的直线交双曲线于两点,求弦长20.(12分)已知抛物线C:上有一动点,,过点P作抛物线C的切线交y轴于点Q(1)判断线段PQ的垂直平分线是否过定点?若过,求出定点坐标;若不过,请说明理由;(2)过点P作垂线交抛物线C于另一点M,若切线的斜率为k,设的面积为S,求的最小值21.(12分)已知等差数列满足(1)求的通项公式;(2)设,求数列的前n项和22.(10分)已知数列{an}的首项a1=1,且an+1=(n∈N*).(1)证明:数列是等比数列;(2)设bn=-,求数列{bn}的前n项和Sn.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由,所以.2、D【解析】求出抛物线的准线方程,可得出点的坐标,利用抛物线的定义可求得点的坐标,再利用两点间的距离公式可求得结果.【详解】易知抛物线焦点为,准线方程为,可得准线与轴的交点,设点,由抛物线的性质,,可得,所以,,解得,即点,所以.故选:D.3、A【解析】设,则,解方程可得结果.【详解】设,则且,所以,所以,所以,所以或(舍).所以.故选:A【点睛】关键点点睛:设是解题关键.4、A【解析】求出双曲线焦点坐标与渐近线方程,利用点到直线的距离公式可求得结果.【详解】在双曲线中,,,,所以,该双曲线的左焦点坐标为,渐近线方程为,即,因,该双曲线的左焦点到渐近线的距离为.故选:A5、C【解析】利用空间向量的坐标运算即可求解.【详解】因为,,所以,故选:C.6、A【解析】根据二项展开式的通项公式,即可求解.【详解】由题意,二项式展开式中第3项,所以展开式中第3项的二项式系数为.故选:A.7、C【解析】求出斜率,根据斜率与倾斜角的关系,即可求解.【详解】解:,即,直线的斜率为,即直线的倾斜角为120°.故选:C.8、D【解析】根据求出焦点为、点坐标,可得直线的方程与抛物线方程联立得点坐标,由两点间的距离公式求出可判断AC;时可得,.由可判断B;求出点坐标可判断D.【详解】如图,若,则,C的焦点为,因为,所以,直线的方程为,整理得,与抛物线方程联立得,解得或,所以,所以,选项A错误;时,因为,所以.又,,所以不平分,选项B不正确;若,则,C的焦点为,因为,所以,直线的方程为,所以,所以,选项C错误;若,则,C的焦点为,因为,所以,直线的方程为,所以,直线的方程为,延长交直线于点D,所以则,所以D,B,N三点共线,选项D正确;故选:D.9、B【解析】利用抛物线的定义,将抛物线上的点到焦点的距离转化为点到准线的距离,即可求出线段中点的横坐标,即得到答案.【详解】由已知可得抛物线的准线方程为,设点的坐标分别为和,由抛物线的定义得,即,线段中点的横坐标为,故线段的中点到轴的距离是.故选:.10、D【解析】求出导数,由导数确定函数在上的单调性与极值,可得最小值【详解】,所以时,,递减,时,,递增,所以是在上的唯一极值点,极小值也是最小值.故选:D11、A【解析】求出通项,利用裂项相消法求数列的前n项和.【详解】因为等差数列,,,所以,所以,所以数列的前项和为故B,C,D错误.故选:A.12、D【解析】根据题意,列出的方程组,解得,再利用斜率公式即可求得结果.【详解】因为抛物线的焦点,由题可知;又点在抛物线上,故可得;又,联立方程组可得,整理得,解得(舍)或,此时,又,故直线的斜率为.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求得的垂直平分线的方程,在求得垂直平分线的交点,则问题得解.【详解】线段中点坐标为,线段斜率为,所以线段垂直平分线的斜率为,故线段的垂直平分线方程为,即.线段中点坐标为,线段斜率为,所以线段垂直平分线的斜率为,故线段的垂直平分线方程为,即.由.所以外接圆的圆心坐标为.故答案为:.【点睛】本题考查直线方程的求解,直线交点坐标的求解,属综合基础题.14、【解析】根据双曲线的方程求出,再求焦距的值.【详解】因为双曲线方程为,所以,.双曲线的焦距为.故答案为:.15、①.②.【解析】设,圆半径为,进而根据题意得,,进而得其轨迹方程为双曲线,再根据双曲线的定义,将周长转化为求的最小值,进而求解.【详解】解:如图1,因为圆被轴截得的弦长为4,被轴分成两部分的弧长之比为1∶2,所以,,所以中点,则,,所以,故设,圆半径为,则,,,所以,即所以圆心的轨迹方程为,表示双曲线,焦点为,,如图2,连接,由双曲线的定义得,即,所以周长为,因为,所以周长的最小值为故答案为:;.16、【解析】由题可得,即求.【详解】∵方程表示双曲线,∴,∴.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据给定条件列式求出数列的首项即可作答.(2)由(1)的结论求出,再借助裂项相消法计算作答.【小问1详解】因为数列是公比为2的等比数列,且是与的等差中项,则有,即,解得,所以.【小问2详解】由(1)知,,则,即有,所以.18、最大值为,最小值为【解析】利用导数可求得的单调性,进而可得极值,比较极值和端点值的大小即可求解.【详解】由可得:,则当时,;当时,;所以在上单调递减,在上单调递增,,又因为,,所以,综上所述:函数在上的最大值为,最小值为.19、(1);(2).【解析】(1)根据双曲线渐近线斜率、双曲线过点可构造方程求得,由此可得双曲线方程;(2)由双曲线方程可得焦点坐标,由此可得方程,与双曲线方程联立后,利用弦长公式可求得结果.【小问1详解】由双曲线方程知:渐近线斜率,又渐近线方程为,;双曲线过点,;由得:,双曲线的方程为:;【小问2详解】由(1)得:双曲线的焦点坐标为;若直线过双曲线的左焦点,则,由得:;设,,则,;由双曲线对称性可知:当过双曲线右焦点时,;综上所述:.20、(1)线段的垂直平分线过定点(2)【解析】(1)设切线的方程为,并与抛物线方程联立,利用判别式求得点坐标,进而求得点坐标,从而求得线段的垂直平分线的方程,进而求得定点坐标.(2)结合弦长公式求得的面积,利用基本不等式求得的最小值.【小问1详解】依题意可知切线的斜率存在,且斜率大于.设直线PQ的方程为,.由消去并化简得,由得,,则,解得,所以,在中,令得,所以,PQ中点为,所以线段PQ的中垂线方程为,即,所以线段的垂直平分线过定点.【小问2详解】由(1)可知,直线PM的方程为,即.由消去并化简得:,所以,而,所以得,,,.所以的面积,所以.当且仅当时等号成立.所以的最小值为.21、(1)(2)【解析】(1)设等差数列的公差为d,由题意得列出方程组,可求得的值,代入公式,即可得答案.(2)由(1)可得,利用等比数列的定义,可证数列为等比数列,结合前n项和公式,即可得答案.【小问1详解】设等差数列的公差为d,由题意得,解得,所以通项公式【小问2详解】由(1)可得,,又,所以数列是以4为首项,4为公比的等比数列,所以2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论