北京市五十七中学2026届高一上数学期末联考模拟试题含解析_第1页
北京市五十七中学2026届高一上数学期末联考模拟试题含解析_第2页
北京市五十七中学2026届高一上数学期末联考模拟试题含解析_第3页
北京市五十七中学2026届高一上数学期末联考模拟试题含解析_第4页
北京市五十七中学2026届高一上数学期末联考模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市五十七中学2026届高一上数学期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.用a,b,c表示空间中三条不同的直线,γ表示平面,给出下列命题:①若a⊥b,b⊥c,则a∥c;②若a∥b,a∥c,则b∥c;③若a∥γ,b∥γ,则a∥b其中真命题的序号是()A.①② B.③C.①③ D.②2.已知点,直线,则点A到直线l的距离为()A.1 B.2C. D.3.已知幂函数f(x)=xa的图象经过点(2,),则函数f(x)为()A.奇函数且在上单调递增 B.偶函数且在上单调递减C.非奇非偶函数且在上单调递增 D.非奇非偶函数且在上单调递减4.已知函数,若函数有四个零点,则的取值范围是A. B.C. D.5.已知函数f(x)=,若f(f(-1))=6,则实数a的值为()A.1 B.C.2 D.46.设函数,则下列结论不正确的是()A.函数的值域是;B.点是函数的图像的一个对称中心;C.直线是函数的图像的一条对称轴;D.将函数的图像向右平移个单位长度后,所得图像对应的函数是偶函数7.已知三个函数,,的零点依次为、、,则A. B.C. D.8.已知等腰直角三角形的直角边的长为4,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的表面积为()A. B.C. D.9.已知集合,集合,则()A.{-1,0,1} B.{1,2}C.{-1,0,1,2} D.{0,1,2}10.下列函数中,既在R上单调递增,又是奇函数的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知点,点P是圆上任意一点,则面积的最大值是______.12.已知集合A={2,log2m},B={m,n}(m,n∈R),且,则A∪B=___________.13.在中,已知是x的方程的两个实根,则________14.已知点A(3,2),B(﹣2,a),C(8,12)在同一条直线上,则a=_____.15.设集合,,则______16.已知函数,若是的最大值,则实数t的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的顶点与原点重合,角的始边与轴的非负半轴重合,并满足:,且有意义.(1)试判断角的终边在第几象限;(2)若角的终边上一点,且为坐标原点),求的值及的值.18.某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米,圆心角为(弧度)(1)求关于的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?19.定义在上的函数(且)为奇函数(1)求实数的值;(2)若函数的图象经过点,求使方程在有解的实数的取值范围;(3)不等式对于任意的恒成立,求实数的取值范围.20.已知向量=(3,4),=(-1,2)(1)求向量与夹角的余弦值;(2)若向量-与+2平行,求λ的值21.已知函数f(x)=lg,(1)求f(x)的定义域并判断它的奇偶性(2)判断f(x)的单调性并用定义证明(3)解关于x的不等式f(x)+f(2x2﹣1)<0

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】因为空间中,用a,b,c表示三条不同的直线,①中正方体从同一点出发的三条线,满足已知但是a⊥c,所以①错误;②若a∥b,b∥c,则a∥c,满足平行线公理,所以②正确;③平行于同一平面的两直线的位置关系可能是平行、相交或者异面,所以③错误;故选D2、C【解析】利用点到直线的距离公式计算即可.【详解】解:点,直线,则点A到直线l的距离,故选:C.【点睛】点到直线的距离.3、C【解析】根据已知求出a=,从而函数f(x)=,由此得到函数f(x)是非奇非偶函数且在(0,+∞)上单调递增【详解】∵幂函数f(x)=xa的图象经过点(2,),∴2a=,解得a=,∴函数f(x)=,∴函数f(x)是非奇非偶函数且在(0,+∞)上单调递增故选C【点睛】本题考查命题真假的判断,考查幂函数的性质等基础知识,考查运算求解能力,是基础题4、B【解析】不妨设,的图像如图所示,则,,其中,故,也就是,则,因,故.故选:B.【点睛】函数有四个不同零点可以转化为的图像与动直线有四个不同的交点,注意函数的图像有局部对称性,而且还是倒数关系.5、A【解析】利用分段函数的解析式,由里及外逐步求解函数值得到方程求解即可【详解】函数f(x)=,若f(f(-1))=6,可得f(-1)=4,f(f(-1))=f(4)=4a+log24=6,解得a=1故选A【点睛】本题考查分段函数应用,函数值的求法,考查计算能力6、B【解析】根据余弦函数的性质一一判断即可;【详解】解:因为,,所以,即函数的值域是,故A正确;因为,所以函数关于对称,故B错误;因为,所以函数关于直线对称,故C正确;将函数的图像向右平移个单位长度得到为偶函数,故D正确;故选:B7、C【解析】令,得出,令,得出,由于函数与的图象关于直线对称,且直线与直线垂直,利用对称性可求出的值,利用代数法求出函数的零点的值,即可求出的值.【详解】令,得出,令,得出,则函数与函数、交点的横坐标分别为、.函数与的图象关于直线对称,且直线与直线垂直,如下图所示:联立,得,则点,由图象可知,直线与函数、的交点关于点对称,则,由题意得,解得,因此,.故选:C.【点睛】本题考查函数的零点之和的求解,充分利用同底数的对数函数与指数函数互为反函数这一性质,结合图象的对称性求解,考查数形结合思想的应用,属于中等题.8、D【解析】如图为等腰直角三角形旋转而成的旋转体这是两个底面半径为,母线长4的圆锥,故S=2πrl=2π××4=故答案为D.9、B【解析】由交集定义求得结果.【详解】由交集定义知故选:B10、B【解析】逐一判断每个函数的单调性和奇偶性即可.【详解】是奇函数,但在R上不单调递增,故A不满足题意;既在R上单调递增,又是奇函数,故B满足题意;、不是奇函数,故C、D不满足题意;故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由点可得直线AB的方程及的值,可得圆心到直线AB的距离d及P到直线AB的最大距离,可得面积的最大值是.【详解】解:直线AB的方程为,圆心到直线AB的距离,点P到直线AB的最大距离为.故面积的最大值是.【点睛】本题主要考查直线与圆的位置关系,点到直线的距离公式及两点间距离公式等,需综合运用所学知识求解.12、【解析】根据条件得到,解出,进而得到.【详解】因为,所以且,所以,解得:,则,,所以.故答案为:13、##【解析】根据根与系数关系可得,,再由三角形内角和的性质及和角正切公式求,即可得其大小.【详解】由题设,,,又,且,∴.故答案为:.14、﹣8【解析】根据AC的斜率等于AB的斜率得到,解方程即得解.【详解】由题意可得AC的斜率等于AB的斜率,∴,解得a=﹣8.故答案为:-8【点睛】本题主要考查斜率的计算和三点共线,意在考查学生对这些知识的理解掌握水平.15、【解析】联立方程组,求出交点坐标,即可得到答案【详解】解方程组,得或.故答案为:16、【解析】先求出时最大值为,再由是的最大值,解出t的范围.【详解】当时,,由对勾函数的性质可得:在时取得最大值;当时,,且是的最大值,所以,解得:.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)第四象限;(2),.【解析】(1)根据题意得sinα<0,cosα>0进而求得答案.(2)先求得m的值,进而利用三角函数定义求得答案【详解】(1)由,得,由有意义,可知,所以是第四象限角.(2)因为,所以,解得又为第四象限角,故,从而,.【点睛】本题主要考查了三角函数的符号及象限的判断,考查三角函数定义,解题过程中特别注意三角函数符号的判断,是基础题18、(1)(2),【解析】(1)由弧长计算及扇环面周长为30米,得,所以,(2)花坛的面积为.装饰总费用为,所以花坛的面积与装饰总费用的比,令,则,当且仅当t=18时取等号,此时答:当x=1时,花坛的面积与装饰总费用的比最大.19、(1)1(2)(3)答案见解析【解析】(1)根据题意可得,即可得解;(2)根据函数的图象经过点,可得函数经过点,从而可求得,在求出函数在时的值域,即可得出答案;(3)原不等式成立即为,令,则,分和两种情况讨论,从而可得出答案.【小问1详解】解:因为函数是定义在上的奇函数,所以,解得,当时,,此时,故当时,函数为奇函数,所以;【小问2详解】解:因为函数的图象经过点,所以函数经过点,故,即,当时,函数为增函数,故,为使方程有解,则,所以;【小问3详解】解:原不等式成立即为,当时,函数单调递增,故只要即可,令,则,∵,∴,∴对恒成立,由得;由得∴;同理,当时,函数单调递减,故只要即可,∴对恒成立,解得;综上可知,当时,;当时,20、(1);(2)-2.【解析】(1)利用平面向量的数量积公式求出夹角的余弦值;(2)根据向量平行的坐标关系得到λ的方程,求值【详解】向量=(3,4),=(-1,2)(1)向量与夹角的余弦值;(2)向量-=(3+λ,4-2λ)与+2=(1,8)平行,则8(3+λ)=4-2λ,解得λ=-2【点睛】本题考查了平面向量数量积公式的运用以及向量平行的坐标关系,属于基础题21、(1)奇函数(2)见解析(3)【解析】(1)先求函数f(x)的定义域,然后检验与f(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论