2026届广东省惠州市第三中学高一数学第一学期期末调研模拟试题含解析_第1页
2026届广东省惠州市第三中学高一数学第一学期期末调研模拟试题含解析_第2页
2026届广东省惠州市第三中学高一数学第一学期期末调研模拟试题含解析_第3页
2026届广东省惠州市第三中学高一数学第一学期期末调研模拟试题含解析_第4页
2026届广东省惠州市第三中学高一数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届广东省惠州市第三中学高一数学第一学期期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,且,,则函数与函数在同一坐标系中的图像可能是()A. B.C. D.2.实数满足,则下列关系正确的是A. B.C. D.3.已知二次函数在区间(2,3)内是单调函数,则实数的取值范围是()A.或 B.C.或 D.4.设,则下列不等式中不成立的是()A. B.C. D.5.若函数的三个零点分别是,且,则()A. B.C. D.6.若幂函数f(x)=xa图象过点(3,9),设,,t=-loga3,则m,n,t的大小关系是()A. B.C. D.7.在空间给出下面四个命题(其中、为不同的两条直线),、为不同的两个平面)①②③④其中正确的命题个数有A.1个 B.2个C.3个 D.4个8.命题:“”的否定是()A. B.C. D.9.设函数,则下列说法错误的是()A.当时,的值域为B.的单调递减区间为C.当时,函数有个零点D.当时,关于的方程有个实数解10.若函数()在有最大值无最小值,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设,则______.12.已知函数,则_________13.经过点,且在轴上的截距等于在轴上的截距的2倍的直线的方程是__________14.设函数,若互不相等的实数、、满足,则的取值范围是_________15.函数的定义域为_____________________16.已知为的外心,,,,且;当时,______;当时,_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数fx(1)求fx定义域;(2)判断函数fx(3)若fx≤log2mx+5对于18.已知函数f(x)=m(1)若m=1,求fx(2)若方程fx=0有两个实数根x1,x2,且x19.已知函数的图象过点,.(1)求函数的解析式;(2)若函数在区间上有零点,求整数k的值;(3)设,若对于任意,都有,求m的取值范围.20.在中,角A,B,C为三个内角,已知,.(1)求的值;(2)若,D为AB的中点,求CD的长及的面积.21.如图,正方形ABCD所在平面与半圆孤所在平面垂直,M是上异于C,D的点(1)证明:平面AMD⊥平面BMC;(2)若正方形ABCD边长为1,求四棱锥M﹣ABCD体积的最大值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】结合指数函数、对数函数的图象按和分类讨论【详解】对数函数定义域是,A错;C中指数函数图象,则,为减函数,C错;BD中都有,则,因此为增函数,只有B符合故选:B2、A【解析】根据指数和对数的运算公式得到【详解】=故A正确.故B不正确;故C,D不正确.故答案为A.【点睛】这个题目考查了指数和对数的公式的互化,以及换底公式的应用,较为简单.3、A【解析】根据开口方向和对称轴及二次函数f(x)=x2-2ax+1的单调区间求参数的取值范围即可.【详解】根据题意二次函数f(x)=x2-2ax+1开口向上,单调递增区间为,单调减区间,因此当二次函数f(x)=x2-2ax+1在区间(2,3)内为单调增函数时a≤2,当二次函数f(x)=x2-2ax+1在区间(2,3)内为单调减函数时a≥3,综上可得a≤2或a≥3.故选:A.4、B【解析】对于A,C,D利用不等式的性质分析即可,对于B举反例即可【详解】对于A,因为,所以,所以,即,所以A成立;对于B,若,,则,,此时,所以B不成立;对于C,因为,所以,所以C成立;对于D,因为,所以,则,所以D成立,故选:B.【点睛】本题考查不等式的性质的应用,属于基础题.5、D【解析】利用函数的零点列出方程,再结合,得出关于的不等式,解之可得选项【详解】因为函数的三个零点分别是,且,所以,,解得,所以函数,所以,又,所以,故选:D【点睛】关键点睛:本题考查函数的零点与方程的根的关系,关键在于准确地运用零点存在定理6、D【解析】由幂函数的图象过点(3,9)求出a的值,再比较m、n、t的大小【详解】幂函数f(x)=xa图象过点(3,9),∴3a=9,a=2;,∴m>n>t故选D【点睛】本题考查了幂函数的图象与性质的应用问题,是基础题7、C【解析】:①若α,则,根据线面垂直的性质可知正确;②若,则;不正确,也可能是m在α内;错误;③若,则;据线面垂直的判定定理可知正确;④若,根据线面平行判定的定理可知正确得到①③④正确,故选C8、C【解析】写出全称命题的否定即可.【详解】“”的否定是:.故选:C.9、C【解析】利用二次函数和指数函数的值域可判断A选项;利用二次函数和指数函数的单调性可判断B选项;利用函数的零点个数求出的取值范围,可判断C选项;解方程可判断D选项.【详解】选项A:当时,当时,,当时,,当时,,综上,函数的值域为,故A正确;选项B:当时,的单调递减区间为,当时,函数为单调递增函数,无单调减区间,所以函数的单调递减为,故B正确;选项C:当时,令,解得或(舍去),当时,要使有解,即在上有解,只需求出的值域即可,当时,,且函数在上单调递减,所以此时的范围为,故C错误;选项D:当时,,即,即,解得或,当,时,,则,即,解得,所以当时,关于的方程有个实数解,故D正确.故选:C.10、B【解析】求出,根据题意结合正弦函数图象可得答案.【详解】∵,∴,根据题意结合正弦函数图象可得,解得.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】根据指数式与对数式的互化,得到,,再结合对数的运算法则,即可求解.【详解】由,可得,,所以.故答案为:.12、【解析】运用代入法进行求解即可.【详解】,故答案为:13、或【解析】设所求直线方程为,将点代入上式可得或.考点:直线的方程14、【解析】作出函数的图象,设,求出的取值范围以及的值,由此可求得的取值范围.【详解】作出函数的图象,设,如下图所示:二次函数的图象关于直线对称,则,由图可得,可得,解得,所以,.故答案为:.【点睛】关键点点睛:本题考查零点有关代数式的取值范围的求解,解题的关键在于利用利用图象结合对称性以及对数运算得出零点相关的等式与不等式,进而求解.15、【解析】,区间为.考点:函数的定义域16、(1).(2).【解析】(1)由可得出为的中点,可知为外接圆的直径,利用锐角三角函数的定义可求出;(2)推导出外心的数量积性质,,由题意得出关于、和的方程组,求出的值,再利用向量夹角的余弦公式可求出的值.【详解】当时,由可得,,所以,为外接圆的直径,则,此时;如下图所示:取的中点,连接,则,所,,同理可得.所以,,整理得,解得,,,因此,.故答案为:;.【点睛】本题考查三角的外心的向量数量积性质的应用,解题的关键就是推导出,,并以此建立方程组求解,计算量大,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)x(2)函数fx(3)-2【解析】(1)解不等式4-x(2)根据奇偶性的定义直接判断即可;(3)根据题意,将问题转化为4-x2≤mx+5且mx+5>0【小问1详解】解:由题知4-x2>0所以函数fx=【小问2详解】解:函数为偶函数,证明如下:由(1)知函数定义域关于原点对称,所以f-x所以函数为偶函数.【小问3详解】解:因为fx≤log即log24-x所以4-x2≤mx+5且mx+5>0所以m≥-1x-x且m>由于-1x-x=-y=-5x在x∈0,2所以m≥-2且m≥-52,即所以实数m的取值范围是-2,+∞,最小值18、(1)x(2)mm<0或m>【解析】(1)根据题意,解不等式x2(2)由题知m≠0Δ=16m2【小问1详解】解:当m=1时,f(x)=x所以f(x)=x2+4x+3=所以fx≤0的解集为【小问2详解】解:因为方程fx=0有两个实数根x1所以m≠0Δ=16m2-12m≥0所以x1所以x12+x2综上,m的取值范围为mm<0或m>19、(1);(2)的取值为2或3;(3).【解析】(1)根据题意,得到,求得的值,即可求解;(2)由(1)可得,得到,设,根据题意转化为函数在上有零点,列出不等式组,即可求解;(3)求得的最大值,得出,得到,设,结合单调性和最值,即可求解.【详解】(1)函数的图像过点,所以,解得,所以函数的解析式为.(2)由(1)可知,,令,得,设,则函数在区间上有零点,等价于函数在上有零点,所以,解得,因为,所以的取值为2或3.(3)因为且,所以且,因为,所以的最大值可能是或,因为所以,只需,即,设,在上单调递增,又,∴,即,所以,所以m的取值范围是.【点睛】已知函数的零点个数求解参数的取值范围问题的常用方法:1、分离参数法:一般命题的情境为给出区间,求满足函数零点个数的参数范围,通常解法为从中分离出参数,构造新的函数,求得新函数的最值,根据题设条件构建关于参数的不等式,从而确定参数的取值范围;2、分类讨论法:一般命题的情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类的标准,在每个小区间内研究函数零点的个数是否符合题意,将满足题意的参数的各校范围并在一起,即为所求的范围.20、(1).(2),的面积.【解析】(1)由可求出,再利用展开即可得出答案;(2)由正弦定理可得,解出,再结合(1)可得,则,从而求出,然后由余弦定理解出,故在中利用余弦定理可得,最后求出的面积即可.【详解】(1),,,;(2)由正弦定理可得,解得,由(1)可得:,,,,,又由余弦定理可得:,解得,在中,,,的面积.【点睛】本题考查了三角函数的和差公式以及正、余弦定理的应用,考查了同角三角函数基本关系式,需要学生具备一定的推理与计算能力,属于中档题.21、(1)证明见解析;(2).【解析】(1)先证明BC⊥平面CMD,推出DM⊥BC,然后证明DM⊥平面BMC,由线面垂直推出面面垂直;(2)当M位于半圆弧CD的中点处时,四棱锥M﹣ABCD的高最大,体积也最大,相应数值代入棱锥的体积公式即可得解.【详解】(1)证明:由题设知,平面CMD⊥平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论