黑龙江省哈尔滨十九中2026届高一上数学期末教学质量检测模拟试题含解析_第1页
黑龙江省哈尔滨十九中2026届高一上数学期末教学质量检测模拟试题含解析_第2页
黑龙江省哈尔滨十九中2026届高一上数学期末教学质量检测模拟试题含解析_第3页
黑龙江省哈尔滨十九中2026届高一上数学期末教学质量检测模拟试题含解析_第4页
黑龙江省哈尔滨十九中2026届高一上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨十九中2026届高一上数学期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在空间中,直线平行于直线,直线与为异面直线,若,则异面直线与所成角的大小为()A. B.C. D.2.若,且,则的值是A. B.C. D.3.已知角α的终边经过点,则()A. B.C. D.4.在三角形中,若点满足,则与的面积之比为()A. B.C. D.5.已知则的值为()A. B.2C.7 D.56.直线的倾斜角A. B.C. D.7.已知函数在内是减函数,则的取值范围是A. B.C. D.8.有位同学家开了个小卖部,他为了研究气温对热饮销售的影响,经过统计得到一天所卖的热饮杯数(y)与当天气温(x℃)之间的线性关系,其回归方程为=-2.35x+147.77.如果某天气温为2℃,则该小卖部大约能卖出热饮的杯数是A.140 B.143C.152 D.1569.在中,若,且,则的形状为A.等边三角形 B.钝角三角形C.锐角三角形 D.等腰直角三角形10.设,且,则等于()A.100 B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若命题,,则的否定为___________.12.若函数y=f(x)是函数y=2x的反函数,则f(2)=______.13.设函数是以4为周期的周期函数,且时,,则__________14.已知关于x的不等式的解集为,则的解集为_________15.已知幂函数为奇函数,则___________.16.关于函数有下述四个结论:①是偶函数②在区间单调递增③的最大值为1④在有4个零点其中所有正确结论的编号是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(R).(1)当取什么值时,函数取得最大值,并求其最大值;(2)若为锐角,且,求的值.18.已知直线l的方程为.(1)求过点A(3,2),且与直线l垂直的直线l1方程;(2)求与直线l平行,且到点P(3,0)的距离为的直线l2的方程.19.已知角的终边在第二象限,且与单位圆交于点(1)求的值;(2)求的值.20.如图,在四棱锥中,底面,,,,,是中点(Ⅰ)证明:平面;(Ⅱ)求二面角的正弦值21.在区间上,如果函数为增函数,而函数为减函数,则称函数为“弱增”函数.试证明:函数在区间上为“弱增”函数.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据异面直线所成角的定义与范围可得结果.【详解】因为且,故异面直线与所成角的大小为的补角,即为.故选:A.2、A【解析】由,则,考点:同角间基本关系式3、D【解析】推导出,,,再由,求出结果【详解】∵角的终边经过点,∴,,,∴故选:D4、B【解析】由题目条件所给的向量等式,结合向量的线性运算推断P、Q两点所在位置,比较两个三角形的面积关系【详解】因为,所以,即,得点P为线段BC上靠近C点的三等分点,又因为,所以,即,得点Q为线段BC上靠近B点的四等分点,所以,所以与的面积之比为,选择B【点睛】平面向量的线性运算要注意判断向量是同起点还是收尾相连的关系再使用三角形法则和平行四边形法则进行加减运算,借助向量的数乘运算可以判断向量共线,及向量模长的关系5、B【解析】先算,再求【详解】,故选:B6、A【解析】先求得直线的斜率,然后根据斜率和倾斜角的关系,求得.【详解】可得直线的斜率为,由斜率和倾斜角的关系可得,又∵∴故选:A.【点睛】本小题主要考查直线倾斜角与斜率,属于基础题.7、B【解析】由题设有为减函数,且,恒成立,所以,解得,选B.8、B【解析】一个热饮杯数与当天气温之际的线性关系,其回归方程某天气温为时,即则该小卖部大约能卖出热饮的杯数是故选点睛:本题主要考查的知识点是线性回归方程的应用,即根据所给的或者是做出的线性回归方程,预报的值,这是一些解答题9、D【解析】由条件可得A为直角,结合,可得解.【详解】,=,又,为等腰直角三角形,故选D.【点睛】本题考查了向量数量积表示两个向量的垂直关系,考查了三角形的形状,属于基础题.10、C【解析】由,得到,再由求解.【详解】因为,所以,则,所以,则,解得,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、,【解析】利用特称命题的否定可得出结论.【详解】命题为特称命题,该命题的否定为“,”.故答案为:,.12、1【解析】根据反函数的定义即可求解.【详解】由题知y=f(x)=,∴f(2)=1.故答案为:1.13、##0.5【解析】利用周期和分段函数的性质可得答案.【详解】,.故答案为:.14、或【解析】由已知条件知,结合根与系数关系可得,代入化简后求解,即可得出结论.【详解】关于x的不等式的解集为,可得,方程的两根为,∴,所以,代入得,,即,解得或.故答案为:或.【点睛】本题考查一元二次不等式与一元二次方程的关系,以及解一元二次不等式,属于基础题.易错点是忽视对的符号的判断.15、【解析】根据幂函数的定义,结合奇函数的定义进行求解即可.【详解】因为是幂函数,所以,或,当时,,因为,所以函数是偶函数,不符合题意;当时,,因为,所以函数是奇函数,符合题意,故答案为:16、①③【解析】利用奇偶性定义可判断①;时,可判断②;分、时求出可判断故③;时,由可判断④.【详解】因为,,所以①正确;当时,,当时,,,时,单调递减,故②错误;当时,,;当时,,综上的最大值为1,故③正确;时,由得,解得,由不存在零点,所以在有2个零点,故④错误.故答案为:①③.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)Z)时,函数f(x)取得最大值,其值为.(2).【解析】(1)由倍角公式,辅助角公式,化简f(x),利用三角函数的图像和性质即可得解.(2)把代入f(x)的解析式得f()的解析式,可求得,进而求得.【详解】(1)f(x)=2sinxcosx+cos2x=sin2x+cos2x,,∴当,即Z)时,函数f(x)取得最大值,其值为(2)∵,∴∴∵θ为锐角,∴.∴【点睛】本题主要考查三角函数性质,同角三角函数的基本关系等知识,考查运算求解能力,属于中档题18、(1)(2)或【解析】(1)可设所求直线的方程为,将A(3,2)代入求得参数,即可得解;(2)可设所求直线方程为,根据点P(3,0)到直线的距离求得参数,即可得解.【小问1详解】解:可设所求直线的方程为,则有,解得,所以所求直线方程为;【小问2详解】解:可设所求直线方程为,则有,解得或,所以所求直线方程为或.19、【解析】(1)先求出,再求出的值.(2)先利用诱导公式化简,再把tan的值代入求解.【详解】(1)由题得因为角终边在第二象限,所以所以.(2)=.【点睛】本题主要考查三角函数的坐标定义,考查同角的商数关系和诱导公式,意在考查学生对这些知识的掌握水平和分析推理能力.20、(1)见解析;(2).【解析】(1)通过和得到平面,利用等腰三角形的性质可得,可得结论;(2)过点作,垂足为,连接,证得是二面角的平面角,在中先求出,然后在中求出结论.试题解析:(1)证明:在四棱锥中,因底面,平面,故.由条件,,∴平面.又平面,∴.由,,可得.∵是的中点,∴.又,综上得平面.(2)过点作,垂足为,连接,由(1)知,平面,在平面内的射影是,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论