版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省张家口市宣化市一中2026届高二上数学期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆()的右顶点是抛物线的焦点,且短轴长为2,则该椭圆方程为()A. B.C. D.2.如图,在四棱锥中,平面,底面是正方形,,则下列数量积最大的是()A. B.C. D.3.在三棱锥中,点E,F分别是的中点,点G在棱上,且满足,若,则()A. B.C. D.4.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,如果输入a=102,b=238,则输出的a的值为()A.17 B.34C.36 D.685.在中,已知,则的形状是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.正三角形6.数列的通项公式是()A. B.C. D.7.高中生在假期参加志愿者活动,既能服务社会又能锻炼能力.某同学计划在福利院、社区、图书馆和医院中任选两个单位参加志愿者活动,则参加图书馆活动的概率为()A. B.C. D.8.已知抛物线y2=4x的焦点为F,定点,M为抛物线上一点,则|MA|+|MF|的最小值为()A.3 B.4C.5 D.69.已知是空间的一个基底,,,,若四点共面.则实数的值为()A. B.C. D.10.抛物线的焦点到准线的距离是A. B.1C. D.11.设是两个不同的平面,是一条直线,以下命题正确的是A.若,则 B.若,则C.若,则 D.若,则12.设函数在定义域内可导,的图象如图所示,则导函数的图象可能为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知两点和则以为直径的圆的标准方程是__________.14.设数列满足且,则________.数列的通项=________.15.已知抛物线的焦点为F,若抛物线上一点P到x轴的距离为2,则|PF|的值为___________.16.已知抛物线C:y2=2px过点P(1,1):①点P到抛物线焦点的距离为②过点P作过抛物线焦点的直线交抛物线于点Q,则△OPQ的面积为③过点P与抛物线相切的直线方程为x-2y+1=0④过点P作两条斜率互为相反数的直线交抛物线于M,N两点,则直线MN的斜率为定值其中正确的是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知空间三点.(1)求以为邻边平行四边形的周长和面积;(2)若,且分别与垂直,求向量的坐标.18.(12分)如图,正四棱锥底面的四个顶点在球的同一个大圆上,点在球面上,且正四棱锥的体积为.(1)该正四棱锥的表面积的大小;(2)二面角的大小.(结果用反三角表示)19.(12分)如图,四边形ABCD是正方形,四边形BEDF是菱形,平面平面.(1)证明:;(2)若,且平面平面BEDF,求平面ADE与平面CDF所成的二面角的正弦值.20.(12分)已知的内角A,B,C所对的边分别为a,b,c,且(1)求B;(2)若,求的面积的最大值21.(12分)已知数列为各项均为正数的等比数列,若(1)求数列的通项公式;(2)求数列的前n项和22.(10分)已知直线,圆.(1)求证:直线l恒过定点;(2)若直线l的倾斜角为,求直线l被圆C截得的弦长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求得抛物线的焦点从而求得,再结合题意求得,即可写出椭圆方程.【详解】因为抛物线的焦点坐标为,故可得;又短轴长为2,故可得,即;故椭圆方程为:.故选:.2、B【解析】设,根据线面垂直的性质得,,,,根据向量数量积的定义逐一计算,比较可得答案.【详解】解:设,因为平面,所以,,,,又底面是正方形,所以,,对于A,;对于B,;对于C,;对于D,,所以数量积最大的是,故选:B.3、B【解析】利用空间向量的加、减运算即可求解.【详解】由题意可得故选:B.4、B【解析】根据程序框图所示代入运行即可.【详解】初始输入:;第一次运算:;第二次运算:;第三次运算:;第四次运算:;结束,输出34.故选:B.5、B【解析】利用诱导公式、两角和的正弦公式化简已知条件,由此判断出三角形的形状.【详解】由,得,得,由于,所以,所以.故选:B6、C【解析】根据数列前几项,归纳猜想出数列的通项公式.【详解】依题意,数列的前几项为:;;;……则其通项公式.故选C.【点睛】本小题主要考查归纳推理,考查数列通项公式的猜想,属于基础题.7、D【解析】对4个单位分别编号,利用列举法求出概率作答.【详解】记福利院、社区、图书馆和医院分别为A,B,C,D,从4个单位中任选两个的试验有AB,AC,AD,BC,BD,CD,共6个基本事件,它们等可能,其中有参加图书馆活动的事件有AC,BC,CD,共3个基本事件,所以参加图书馆活动的概率.故选:D8、B【解析】作出图象,过点M作准线的垂线,垂足为H,结合图形可得当且仅当三点M,A,H共线时|MA|+|MH|最小,求解即可【详解】过点M作准线的垂线,垂足为H,由抛物线的定义可知|MF|=|MH|,则问题转化为|MA|+|MH|的最小值,结合图形可得当且仅当三点M,A,H共线时|MA|+|MH|最小,其最小值为.故选:B9、A【解析】由共面定理列式得,再根据对应系数相等计算.【详解】因为四点共面,设存在有序数对使得,则,即,所以得.故选:A10、D【解析】,,所以抛物线的焦点到其准线的距离是,故选D.11、C【解析】对于A、B、D均可能出现,而对于C是正确的12、D【解析】根据的图象可得的单调性,从而得到在相应范围上的符号和极值点,据此可判断的图象.【详解】由的图象可知,在上为增函数,且在上存在正数,使得在上为增函数,在为减函数,故在有两个不同的零点,且在这两个零点的附近,有变化,故排除A,B.由在上为增函数可得在上恒成立,故排除C.故选:D.【点睛】本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据的中点是圆心,是半径,即可写出圆的标准方程.【详解】因为和,故可得中点为,又,故所求圆的半径为,则所求圆的标准方程是:.故答案为:.14、①.5②.【解析】设,根据题意得到数列是等差数列,求得,得到,利用,结合“累加法”,即可求得.【详解】解:由题意,数列满足,所以当时,,,解得,设,则,且,所以数列是等差数列,公差为,首项为,所以,即,所以,当时,可得,其中也满足,所以数列的通项公式为.故答案为:;.15、3【解析】先求出抛物线的焦点坐标和准线方程,再利用抛物线的定义可求得答案【详解】抛物线的焦点为,准线为,因为抛物线上一点P到x轴的距离为2,所以由抛物线的定义可得,故答案为:316、②③④【解析】由抛物线过点可得抛物线的方程,求出焦点的坐标及准线方程,由抛物线的性质可判断①;求出直线的方程与抛物线联立切线的坐标,进而求出三角形的面积,判断②;设直线方程为y-1=k(x-1),与y2=x联立求得斜率,进而可得在处的切线方程,从而判断③;设直线的方程为抛物线联立求出的坐标,同理求出的坐标,进而求出直线的斜率,从而可判断④【详解】解:由抛物线过点,所以,所以,所以抛物线的方程为:;可得抛物线的焦点的坐标为:,,准线方程为:,对于①,由抛物线的性质可得到焦点的距离为,故①错误;对于②,可得直线的斜率,所以直线的方程为:,代入抛物线的方程可得:,解得,所以,故②正确;对于③,依题意斜率存在,设直线方程为y-1=k(x-1),与y2=x联立,得:ky2-y+1-k=0,=1-4k(1-k)=0,4k2-4k+1=0,解得k=,所以切线方程为x-2y+1=0,故③正确;对于④,设直线的方程为:,与抛物线联立可得,所以,所以,代入直线中可得,即,,直线的方程为:,代入抛物线的方程,可得,代入直线的方程可得,所以,,所以为定值,故④正确故答案为:②③④.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)周长为,面积为7.(2)或.【解析】(1)根据点,求出向量,利用向量的摸公式即可求出的距离,可以求出周长,再利用向量的夹角公式求出夹角的余弦值,根据平方关系得到正弦值,再利用即可求解;(2)首先设出,根据题意可得出的方程组,解出满足条件所有的值即可求解.【小问1详解】由题中条件可知,,,,.所以以为邻边的平行四边形的周长为.因为,因为,所以.所以.故以以为邻边的平行四边形的面积为:.【小问2详解】设,则,,因为,且分别与垂直,得,解得或所以向量的坐标为或.18、(1)(2)【解析】(1)首先求出球的半径,即可得到四棱锥的棱长,再根据锥体的表面积公式计算可得;(2)取中点,联结,即可得到,从而得到为二面角的平面角,再利用余弦定理计算可得.【小问1详解】解:设球的半径为,则解得,所以所有棱长均为,因此【小问2详解】解:取中点,联结,因为均为正三角形,因此,即为二面角的平面角.,因此二面角的大小为.19、(1)证明见解析;(2).【解析】(1)连接交于点,连接,要证明,只需证明平面即可;(2)以D为原点建系,分别求出平面与平面的法向量,再利用向量的夹角公式计算即可得到答案.【详解】(1)证明:如图,连接交于点,连接四边形为正方形,,且为的中点又四边形为菱形,平面平面又平面OAE.(2)解:如图,建立空间直角坐标系,不妨设,则,,则由(1)得又平面平面,平面平面,平面ABCD,故,同理,设为平面的法向量,为平面的法向量,则故可取,同理故可取,所以设平面与平面所成的二面角为,则,所以平面与平面所成的二面角的正弦值为20、(1)(2)【解析】(1):根据正弦定理由边化角和三角正弦和公式即可求解;(2):根据余弦定理和均值不等式求得最大值,利用面积公式即可求解【小问1详解】由正弦定理及,得,∵,∵,∴【小问2详解】由余弦定理,∴,∴,当且仅当时等号成立,∴的面积的最大值为21、(1)(2)【解析】(1)利用等比数列通项公式列出方程组,可求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 隐静脉主干消融同期与分期处理属支
- 清廉元宵活动方案策划(3篇)
- 涂料小区活动策划方案(3篇)
- 2026年郑州大学智能集群系统教育部工程研究中心招聘非事业编制(劳务派遣)工作人员科研助理1名备考考试试题及答案解析
- 飞机儿童介绍
- 2026汉口银行嘉鱼支行招聘10人备考考试题库及答案解析
- 2026福建厦门市集美区杏苑实验幼儿园产假顶岗教师招聘1人备考考试试题及答案解析
- 2025山东济宁市公共交通集团有限公司派遣制维修工、加油员递补备考考试题库及答案解析
- 2026广西南宁马山县人力资源和社会保障局招聘外聘工作人员(就业专干)1人备考考试试题及答案解析
- 2026重庆市合川区人民医院招聘见习生90人备考考试题库及答案解析
- 2026新疆阿合奇县公益性岗位(乡村振兴专干)招聘44人笔试参考题库及答案解析
- 北京中央广播电视总台2025年招聘124人笔试历年参考题库附带答案详解
- 纪委监委办案安全课件
- 儿科pbl小儿肺炎教案
- 腹部手术围手术期疼痛管理指南(2025版)
- JJG(吉) 145-2025 无创非自动电子血压计检定规程
- 2025年学校领导干部民主生活会“五个带头”对照检查发言材料
- 颅内压监测与护理
- 浙江省绍兴市上虞区2024-2025学年七年级上学期语文期末教学质量调测试卷(含答案)
- 智慧城市建设技术标准规范
- EPC总承包项目管理组织方案投标方案(技术标)
评论
0/150
提交评论