云南省牟定县茅阳中学2022-2023学年数学八年级第一学期期末统考试题含解析_第1页
云南省牟定县茅阳中学2022-2023学年数学八年级第一学期期末统考试题含解析_第2页
云南省牟定县茅阳中学2022-2023学年数学八年级第一学期期末统考试题含解析_第3页
云南省牟定县茅阳中学2022-2023学年数学八年级第一学期期末统考试题含解析_第4页
云南省牟定县茅阳中学2022-2023学年数学八年级第一学期期末统考试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图的七边形ABCDEFG中,AB,ED的延长线相交于O点,若图中∠1,∠2,∠3,∠4的外角的角度和为220°,则∠BOD的度数为何?()A.40° B.45° C.50° D.60°2.若,,则的值为()A. B. C. D.3.若分式方程无解,则m的值为()A.﹣1 B.0 C.1 D.34.若一个多边形的每个外角都等于60°,则它的内角和等于()A.180° B.720° C.1080° D.540°5.如图,在中,的垂直平分线分别交,于点,.若的周长为20,,则的周长为()A.6 B.8 C.12 D.206.如图,在中,,,是边上的一个动点(不与顶点重合),则的度数可能是()A. B. C. D.7.如图,的面积为12,,,的垂直平分线分别交,边于点,,若点为边的中点,点为线段上一动点,则周长的最小值为()A.6 B.8 C.10 D.128.如图,在△ABC和△DEF中,AB=DE,∠A=∠D,添加一个条件不能判定这两个三角形全等的是()A.AC=DF B.∠B=∠E C.BC=EF D.∠C=∠F9.已知甲校原有1016人,乙校原有1028人,寒假期间甲、乙两校人数变动的原因只有转出与转入两种,且转出的人数比为1:3,转入的人数比也为1:3.若寒假结束开学时甲、乙两校人数相同,问:乙校开学时的人数与原有的人数相差多少?()A.6 B.9 C.12 D.1810.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1、2、3 B.2、3、6 C.4、6、8 D.5、6、12二、填空题(每小题3分,共24分)11.若,则___.12.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,设运动时间为t秒.(1)当t=_____.时,线段AP是∠CAB的平分线;(2)当t=_____时,△ACP是以AC为腰的等腰三角形.13.已知关于的一元二次方程有两个实数解,则的取值范围是________.14.如图所示,AD是△ABC的中线,点E是AD的中点,连接BE、CE,若△ABC的面积为8,则阴影部分的面积为_____.15.如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α=_________度.16.计算:(3×10﹣5)2÷(3×10﹣1)2=_____.17.如图,长方形中,,,点在边上,且,点是边上一点,连接,将四边形沿折叠,若点的对称点恰好落在边上,则的长为____.18.将函数的图象沿轴向下平移2个单位,所得图象对应的函数表达式为__________.三、解答题(共66分)19.(10分)以下是小嘉化简代数式的过程.解:原式……①……②……③(1)小嘉的解答过程在第_____步开始出错,出错的原因是_____________________;(2)请你帮助小嘉写出正确的解答过程,并计算当时代数式的值.20.(6分)已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=20°,∠C=60°.求∠DAE的度数.21.(6分)如图,在四边形ABCD中,∠ABC=∠ADC=45°,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)求证:AE⊥BD;(2)若AD=2,CD=3,试求四边形ABCD的对角线BD的长.22.(8分)阅读下列题目的解题过程:已知a、b、c为ΔABC的三边,且满足a2c2解:∵a2∴c2(∴c2∴ΔABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)该步正确的写法应是:;(3)本题正确的结论为:.23.(8分)如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.(1)求证:AD平分∠BAC.(2)写出AB+AC与AE之间的等量关系,并说明理由.24.(8分)如图,在中,以为圆心,为半径画弧,交于,分别以、为圆心,大于的长为半径画弧,交于点,作射线交于点E,若,,求的长为.25.(10分)如图,已知直线,直线,直线,分别交轴于,两点,,相交于点.(1)求,,三点坐标;(2)求26.(10分)(1)先化简,再求值:其中.(2)解方程:.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∠BOD.【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为220°,∴∠1+∠2+∠3+∠4+220°=4×180°,∴∠1+∠2+∠3+∠4=500°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣500°=40°,故答案为A.【点睛】本题主要考查的是多边形内角与外角的知识点,熟练掌握多边形内角与外角的关系是本题的解题关键.2、C【分析】将原式进行变形,,然后利用完全平方公式的变形求得a-b的值,从而求解.【详解】解:∵∴又∵∴∴∴故选:C.【点睛】本题考查因式分解及完全平方公式的灵活应用,掌握公式结构灵活变形是解题关键.3、A【分析】

【详解】两边同乘以(x+3)得:x+2=m,x=m-2,∵方程无解∴x+3=0,即m-2+3=0,∴m=-1,故选A.4、B【解析】设多边形的边数为n,∵多边形的每个外角都等于60°,∴n=360°÷60°=6,∴这个多边形的内角和=(6﹣2)×180°=720°.故选B点睛:由一个多边形的每个外角都等于60°,根据n边形的外角和为360°计算出多边形的边数n,然后根据n边形的内角和定理计算即可.5、C【分析】根据线段垂直平分线的性质得出CD=BD,BC=2BE,得出AC+AB=△ABC的周长-BC,再求出△ABD的周长=AC+AB即可.【详解】解:∵BE=4,DE是线段BC的垂直平分线,

∴BC=2BE=8,BD=CD,

∵△ABC的周长为20,

∴AB+AC=16-BC=20-8=12,

∴△ABD的周长=AD+BD+AB=AD+CD+AB=AC+AB=12,

故选:C.【点睛】本题考查了线段垂直平分线的性质,能根据线段垂直平分线的性质得出BD=CD是解此题的关键.6、C【分析】只要证明70°<∠BPC<125°即可解决问题.【详解】∵AB=AC,∴∠B=∠ACB=55°,∴∠A=180°﹣2×55°=180°-110°=70°.∵∠BPC=∠A+∠ACP,∴∠BPC>70°.∵∠B+∠BPC+∠PCB=180°,∴∠BPC=180°-∠B-∠PCB=125°-∠PCB<125°,∴70°<∠BPC<125°.故选:C.【点睛】本题考查了等腰三角形的性质,三角形的内角和定理等知识,解答本题的关键是灵活运用所学知识解决问题,属于中考常考题型.7、B【分析】先根据中点的定义求出CD,然后可知的周长=PC+PD+CD,其中CD为定长,从而得出PC+PD最小时,的周长最小,连接AD交EF于点P,根据垂直平分线的性质可得此时PC+PD=PA+PD=AD,根据两点之间线段最短可得AD即为PC+PD的最小值,然后根据三线合一和三角形的面积公式即可求出AD,从而求出结论.【详解】解:∵,点为边的中点∴CD=∵的周长=PC+PD+CD,其中CD为定长∴PC+PD最小时,的周长最小连接AD交EF于点P,如下图所示∵EF垂直平分AC∴PA=PC∴此时PC+PD=PA+PD=AD,根据两点之间线段最短,AD即为PC+PD的最小值∵,点D为BC的中点∴AD⊥BC∴,即解得:AD=6∴此时的周长=PC+PD+CD=AD+CD=1即周长的最小值为1.故选B.【点睛】此题考查的是求三角形周长的最小值、垂直平分线的性质和等腰三角形的性质、掌握两点之间线段最短、垂直平分线的性质和三线合一是解决此题的关键.8、C【分析】根据三角形全等的判定定理等知识点进行选择判断.【详解】A、添加AC=DF,可利用三角形全等的判定定理判定△ABC≌△DEF,故此选项不合题意;B、添加∠B=∠E,可利用三角形全等的判定定理判定△ABC≌△DEF,故此选项不合题意;C、添加BC=EF,不能判定△ABC≌△DEF,故此选项符合题意;D、添加∠C=∠F,可利用三角形全等的判定定理判定△ABC≌△DEF,故此选项不合题意;故选C.【点睛】本题主要考查你对三角形全等的判定等考点的理解.9、D【分析】分别设设甲、乙两校转出的人数分别为人、人,甲、乙两校转入的人数分别为人、人,根据寒假结束开学时甲、乙两校人数相同,可列方程求解即可解答.【详解】设甲、乙两校转出的人数分别为人、人,甲、乙两校转入的人数分别为人、人,

∵寒假结束开学时甲、乙两校人数相同,

∴,

整理得:,

开学时乙校的人数为:(人),

∴乙校开学时的人数与原有的人数相差;1028-1010=18(人),

故选:D.【点睛】本题考查了二元一次方程的应用,解决本题的关键是根据题意列出方程.10、C【分析】根据三角形的两边之和大于第三边,两边之差小于第三边即可求解.【详解】解:选项A:1+2=3,两边之和等于第三边,故选项A错误;选项B:2+3=5<6,两边之和小于第三边,故选项B错误;选项C:符合三角形的两边之和大于第三边,两边之差小于第三边,故选项C正确;选项D:5+6=11<12,两边之和小于第三边,故选线D错误;故选:C.【点睛】本题考查三角形的三边之间的关系,属于基础题,熟练掌握三角形的三边之间的关系是解决本题的关键.二、填空题(每小题3分,共24分)11、7【分析】利用完全平方公式对已知变形为,即可求解.【详解】∵,∴,即,∴,故答案为:.【点睛】本题考查了分式的化简求值,利用完全平方公式对已知变形是解题的关键.12、s,3或s或6s【分析】(1)过P作PE⊥AB于E,根据角平分线的性质可得PE=CP=2t,AE=AC=6,进而求得BE、BP,再根据勾股定理列方程即可解答;(2)根据题意分AC=CP、AC=AP情况进行讨论求解.【详解】(1)在△ABC中,∵∠ACB=90°,AC=6cm,BC=8cm,∴AB=10cm,如图,过P作PE⊥AB于E,∵线段AP是∠CAB的平分线,∠ACB=90°,∴PE=CP=2t,AE=AC=6cm,∴BP=(8-2t)cm,BE=10-6=4cm,在Rt△PEB中,由勾股定理得:,解得:t=,故答案为:s;(2)∵△ACP是以AC为腰的等腰三角形,∴分下列情况讨论,当AC=CP=6时,如图1,t==3s;当AC=CP=6时,如图2,过C作CM⊥AB于M,则AM=PM,CM=,∵AP=10+8-2t=18-2t,∴AM=AP=9-t,在Rt△AMC中,由勾股定理得:,解得:t=s或t=s,∵0﹤2t﹤8+10=18,∴0﹤t﹤9,∴t=s;当AC=AP=6时,如图3,PB=10-6=4,t==6s,故答案为:3s或s或6s.【点睛】本题考查了角平分线的性质、等腰三角形的判定与性质、勾股定理,难度适中,熟练掌握角平分线的性质,利用分类讨论的思想是解答的关键,13、且【分析】根据一元二次方程的定义及根的判别式求解即可.【详解】解:关于的一元二次方程有两个实数根,,解得:且.故答案为:且.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.14、1.【分析】根据三角形的中线将三角形分成面积相等的两部分的知识进行解答即可.【详解】∵AD是△ABC的中线,∴S△ABD=S△ACDS△ABC=1,∵点E是AD的中点,∴S△ABE=S△ABD=2,S△CED=S△ADC=2,∴阴影部分的面积=S△ABE+S△CED=1,故答案为:1.【点睛】此题考查三角形中线的性质,三角形的面积,解题关键在于利用面积等量替换解答.15、25°.【解析】试题分析:延长DC交直线m于E.∵l∥m,∴∠CEB=65°.在Rt△BCE中,∠BCE=90°,∠CEB=65°,∴∠α=90°﹣∠CEB=90°﹣65°=25°.考点:①矩形的性质;②平行线的性质;③三角形内角和定理.16、.【分析】首先把括号里的各项分别乘方,再根据单项式除法进行计算,最后把负整数指数化为正整数指数即可.【详解】解:原式=(9×10﹣10)÷(9×10﹣2)=(9÷9)×(10﹣10÷10﹣2)=10﹣8=.故答案为:.【点睛】此题主要考查了单项式的除法以及负整数指数幂,题目比较基础,关键是掌握计算顺序.17、1.【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD,A′E=AE,可证明Rt△A′CD≌Rt△DBA,根据全等三角形的性质得到A′C=BD=2,A′O=4,然后在Rt△A′OE中根据勾股定理列出方程求解即可.【详解】解:如图,

∵四边形OABC是矩形,

∴BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,

∵CD=1DB,

∴CD=6,BD=2,

∴CD=AB,

∵将四边形ABDE沿DE折叠,若点A的对称点A′恰好落在边OC上,

∴A′D=AD,A′E=AE,

在Rt△A′CD与Rt△DBA中,,∴Rt△A′CD≌Rt△DBA(HL),

∴A′C=BD=2,

∴A′O=4,

∵A′O2+OE2=A′E2,

∴42+OE2=(8-OE)2,

∴OE=1,

故答案是:1.【点睛】本题考查了轴对称变换(折叠问题),矩形的性质,全等三角形的判定和性质,掌握相关性质是解题的关键.18、【解析】直接利用一次函数平移规律,“上加下减”进而得出即可.【详解】将函数y=3x的图象沿y轴向下平移1个单位长度后,所得图象对应的函数关系式为:y=3x−1.故答案为:y=3x−1.【点睛】此题主要考查了一次函数图象与几何变换,正确掌握平移规律是解题关键.三、解答题(共66分)19、(1)②;去括号时-y2没变号;(2)解答过程见解析,代数式化简为3y2-4xy,值为1【分析】(1)依据完全平方公式、平方差公式、去括号法则、合并同类项法则进行判断即可;

(2)依据去括号法则、合并同类项法则进行化简,然后将4x=3y代入,最后,再合并同类项即可.【详解】解:(1)②出错,原因:去括号时-y2没变号;

故答案为:②;去括号时-y2没变号.

(2)正确解答过程:

原式=(x2-4xy+4y2)-(x2-y2)-2y2,

=x2-4xy+4y2-x2+y2-2y2,

=3y2-4xy.

当4x=3y时,原式3y2-3y2=1.【点睛】本题主要考查的是整式的混合运算,熟练掌握相关法则是解题的关键.20、20°【分析】先根据三角形的内角和定理得到∠BAC的度数,再利用角平分线的性质可求出∠EAC=∠BAC,而∠DAC=90°﹣∠C,然后利用∠DAE=∠EAC﹣∠DAC进行计算即可.【详解】解:在△ABC中,∵∠B=20°,∠C=60°∴∠BAC=180°﹣∠B﹣∠C=180°﹣20°﹣60°=100°∵AE是的角平分线,∴∠EAC=∠BAC=×100°=50°,∵AD是△ABC的高,∴∠ADC=90°∴∠DAC=180°﹣∠ADC﹣∠C=180°﹣90°﹣60°=30°,∴∠DAE=∠EAC﹣∠DAC=50°﹣30°=20°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和是180°是解答此题的关键.21、(1)见解析;(2)【分析】(1)由旋转的性质可得AC=BC,∠DBC=∠CAE,即可得∠ACB=90°,根据直角三角形的性质可得AE⊥BD,

(2)由旋转的性质可得CD=CE=3,BD=AE,∠DCE=∠ACB=90°,由勾股定理可求BD的长.【详解】(1)如图,设AC与BD的交点为点M,BD与AE的交点为点N,

∵旋转

∴AC=BC,∠DBC=∠CAE

又∵∠ABC=45°,

∴∠ABC=∠BAC=45°,

∴∠ACB=90°,

∵∠DBC+∠BMC=90°

∴∠AMN+∠CAE=90°

∴∠AND=90°

∴AE⊥BD,

(2)如图,连接DE,

∵旋转

∴CD=CE=3,BD=AE,∠DCE=∠ACB=90°

∴DE==3,∠CDE=45°

∵∠ADC=45°

∴∠ADE=90°

∴EA==

∴BD=.【点睛】此题考查旋转的性质,勾股定理,熟练运用旋转的性质解决问题是本题的关键.22、故答案为:(1)③;(2)当a2−b2=0时,a=b;当a2−b2≠0时,a2+b2=c2;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形.【解析】(1)上述解题过程,从第三步出现错误,错误原因为在等式两边除以a2−b2,没有考虑(2)正确的做法为:将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;(3)根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.【详解】(1)上述解题过程,从第③步开始出现错误;(2)正确的写法为:c2(a2−b2)=(a2+b2)(a2−b2),移项得:c2(a2−b2)−(a2+b2)(a2−b2)=0,因式分解得:(a2−b2)[c2−(a2+b2)]=0,则当a2−b2=0时,a=b;当a2−b2≠0时,a2+b2=c2;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形。故答案为:(1)③;(2)当a2−b2=0时,a=b;当a2−b2≠0时,a2+b2=c2;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形【点睛】此题考查勾股定理的逆定理,因式分解的应用,解题关键在于掌握运算法则.23、(1)详见解析;(2)AB+AC=2AE,理由详见解析.【分析】(1)根据相“HL”定理得出△BDE≌△CDF,故可得出DE=DF,所以AD平分∠BAC;(2)由(1)中△BDE≌△CDE可知BE=CF,AD平分∠BAC,故可得出△AED≌△AFD,所以AE=AF,故AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.【详解】证明:(1)∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,∴△BDE与△CDE均为直角三角形,∵在Rt△BDE与Rt△CDF中,∴Rt△BDE≌Rt△CDF,∴DE=DF,∴AD平分∠BAC;(2)AB+AC=2AE.理由:∵BE=CF,AD平分∠BAC,∴∠EAD=∠CAD,∵∠E=∠AFD=90°,∴∠ADE=∠ADF,在△AED与△AFD中,∴△AED≌△AFD,∴AE=AF,∴AB+AC=AE﹣BE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论