版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Harnessing
Data
andIntelligenceforCollectiveAdvantage:
Ending
ForcedLabour
inGlobalSupply
ChainsW
H
IT
E
PA
P
E
RJA
N
UA
RY
2
0
2
6Images:AdobeStockContentsForeword
3Executivesummary
41
The
problem:Theviciouscycleofforced
labouranddatafragmentation51.1Persistenceamid
progress:Theenduring
natureofforced
labour51.2Thestructuralrootsoffragmentation:
Data,incentives,trust6andgovernancegaps1.3Breakingthevicious
cycle92
Thesolution:TheGlobal
Data
PartnershipAgainst
Forced
Labour10asa
new
modelforcollective
impact2.1Asystem-level
responsetoasystemicchallenge102.2Thetheoryofchange112.3WhyfederateddataandagenticAIaregame
changers132.4Proofof
Concept
inThailand152.5Stakeholdervalueandcollectiveadvantage182.6Summaryofthesolution193
Thefuture:
From
prooftoglobal
impact203.1Minimumviableproduct:Scaling
beyondthe20ProofofConcept3.2Trust
bydesign:Governance,
risksandenabling21conditionsforscale3.3Buildingglobalmomentum
andvisionfor
203022Conclusion
23Contributors24Endnotes
26DisclaimerThisdocumentis
published
bytheWorld
Economic
Forumasacontributionto
a
project,
insight
area
or
interaction.Thefindings,interpretationsandconclusionsexpressedherein
are
a
resultofacollaborativeprocessfacilitated
andendorsedbytheWorld
Economic
Forumbutwhoseresultsdo
not
necessarilyrepresenttheviewsoftheWorld
EconomicForum,nor
the
entirety
of
its
Members,Partnersorother
stakeholders.©2026World
Economic
Forum.All
rightsreserved.
No
part
of
this
publication
maybereproducedortransmitted
in
anyformorbyany
means,
including
photocopyingandrecording,or
by
any
informationstorage
and
retrieval
system.Harnessing
Dataand
IntelligenceforCollectiveAdvantage:EndingForcedLabour
inGlobal
Supply
Chains2At
itscore,the
Partnership
usesafederateddata
modelandagenticAIand
provides
anintelligence
layerthatconnectsfragmenteddata
without
requiring
itto
be
movedorcentralized.Thisdesign
makescollaborationtechnicallyfeasible,ethicallysoundand
rights-based
by
design.Trust
is
builtthroughtransparency,accountabilityand
inclusion,ensuringthatdata
serves
prevention,
remedyandaccountability.Thiswhite
paper
presentstheearlyfindingsandlessonsfromthework.
It
highlightsthe
persistentbarriersthat
makeforced
labourdifficulttodetectand
measure,the
innovativeapproaches
beingdevelopedtoconnectdatasafelyand
effectively,
and
theopportunitiestoscalethis
modelglobally
inthe
yearsahead.TheThailand
ProofofConcept
(POC)
indicatesthatthis
modelcan
be
implementedsafely
andeffectively,andthat
participantsachievegreater
impactwhenworkingtogetherratherthanalone.Endingforced
labourwill
require
leadership,collaborationandcourageequaltothe
scale
ofthe
challenge.Asthe
Partnershipadvancestowards
its
2026development
phase,we
inviteallstakeholders
to
participate,
learnandact.
Byconnectinginsightssecurely,applyingshared
intelligenceand
demonstrating
measurable
progress,wecan
make
forced
laboura
preventable
riskratherthan
anenduring
reality.Forced
labour
remainsoneoftheworld’s
mostpersistentandsystemic
labour
rightschallengesembeddedacrossglobalsupply
chains
andsocieties.Governments,
businesses,trade
unions
andcivilsocietyorganizations
have
invested
heavily
inaddressing
it,yet
progress
hasstalled
because
ourcollective
response
has
notyet
beensystemic
enough.
Despitevasteffortand
regulation,thedata
remainsfragmented,
incentives
misalignedandtrustscarce.Noneofthis
is
inevitable.Agrowingcommunityofpartners
has
begunworkingtogether
underthe
Global
Data
PartnershipAgainst
Forced
Labourtoaddressthischallengethrougha
new
model
of
collaboration.The
Partnership
representsatrusted,
precompetitive
infrastructureforcoordinatedglobal
action.
Itconnects
insightssecurelyacross
public,
privateandcivilsocietysystems
without
requiringanystakeholdertosurrendercontrol
oftheir
dataorsovereignty.
Partnerscollaboratesafely,
linkingexistingsystemsthroughsharedgovernanceandprivacy-preservingtechnologies
ratherthancreating
anothercentraldatabase.TheGlobal
Data
PartnershipAgainst
ForcedLabourseeksto
buildtheconditionsfortrust,interoperabilityandsharedaccountability,demonstratingthatsecuredatacollaboration
isbothtechnicallyfeasibleand
institutionally
possible.HarnessingDataandIntelligenceforCollectiveAdvantage:
Ending
Forced
Labour
inGlobalSupplyChainsForewordJohn
F.SchultzExecutive
Vice-President,
ChiefOperatingandLegalOfficer,
HewlettPackard
EnterpriseHarnessing
Dataand
IntelligenceforCollectiveAdvantage:EndingForcedLabour
inGlobal
Supply
Chains3Maroun
KairouzManaging
Director,World
Economic
ForumJanuary2026Forced
labour
isasystemicglobal
challengethatdemandssystemicaction.
Despitedecadesofreform,compliance
initiatives,advocacy
andcorporateduediligence,
nearly28
million
peopleremaintrapped
incoercivework,acrosssectorsand
borders.1
Thecausesarewell
known,yetprogress
hasstalled
becausetheecosystem
itselfis
fragmented:data
issiloed,
incentivesare
misaligned
andtrust
is
inshortsupply.Governments,businessesandcivilsocietyeach
collect
important
information,
butthesedatasets
rarelyconnect.Worker-generated
insights,whileamongthe
most
immediatesourcesofevidence,are
oftenthe
least
integrated
into
broadersystems.The
result
isaviciouscycle:
limitedvisibilityweakensaccountability,weakaccountabilityerodestrustand
mistrust
preventscollaboration.Understandingwhereandwhyexploitationoccurs
remainsdifficult
because
information
isscattered,
incentivestoshareare
unevenand
collaboration
oftencarries
risk.2
Withouttrustedmechanismstoconnectandverifydataacross
stakeholders,
visibilitystays
partialandcollectiveaction
limited.TheGlobal
Data
PartnershipAgainst
Forced
Labour
wascreatedto
breakthiscycle.
Launched
in2025,
it
providesatrusted,
precompetitive
infrastructurethatenablesgovernments,companies,
international
organizationsandcivilsocietygroupsto
collaborate
securelywithouttransferring,centralizingorgivingupthesovereigntyofunderlying
data.
Built
on
afederated
model,the
Partnership
linksexistingsystemsthroughsharedstandardsandgovernance
protocols,allowingparticipantstogeneratecollective
intelligencewhile
retainingcontroloftheir
owndata.
FederationandagenticAIsit
at
the
core
ofthisarchitecture,enablinganalysiswherethe
data
residesand
linkingsignalsfromvarioussources,suchasworkergrievances,
labour
inspections,recruitment
recordsand
migrationflows,touncover
riskpatterns
invisibletotraditionaltraceability.Startingwitha
ProofofConcept
(POC)
inThailand,
the
Partnership
illustrates
howfederatedsystemscan
revealactionable
insightswhile
maintainingdata
privacyandsovereignty,strengtheningcoordination
amonggovernments,
businessesandcivilsociety.
This
model
buildsafoundationforcollectiveadvantage,witheachstakeholder
benefitingfrom
greatervisibility,efficiencyandaccountabilitywhile
theecosystemasawhole
becomes
morecapable
of
prevention:–Governmentsgainclearervisibility
to
target
enforcementanddesign
responsive
policy.–Businesses
reduceduplicationand
strengthen
compliancewhile
improving
riskmanagement,
supplychain
resilienceand
brandtrust.Asregulatoryscrutiny,
investorexpectationsand
due-diligenceobligations
intensify,collaboration
offersa
practical
pathto
meetstandards
more
efficientlyand
credibly.–Civilsocietyandworker
organizations
amplify
workervoiceandshapesystemicsolutions.–Investorsanddonors
access
reliable
data
toassess
impactanddirect
resourceswherethey
are
most
needed.Thesolution
isscalable
bydesign.
Itsfederatedarchitecturecanexpandacrosssectors,
regionsand
institutionswithoutcentralizingauthorityorcompromisingsovereignty.Asparticipationgrows,each
newdatasetenhancesanalytical
power;stronger
insights
increase
incentivestocollaborate;
and
broaderengagementaccelerates
prevention,
thuscreatingavirtuouscycle
ofshared
intelligence
andcollaborativeaction.The
nextstep
iscollective.
Endingforced
labourwilldemand
leadership,collaborationandcourage
equaltothescaleofthechallenge.Through
shared
evidence,aligned
incentivesand
responsibleinnovation,stakeholderscan
movefrom
isolated
initiativestocoordinated
impact.
Byconnectinginsightssecurelyandactingon
shared
intelligence,
governments,
businessesandcivilsocietycanmakeforced
laboura
preventable
riskratherthan
anenduring
reality.Asthe
Partnership
movestowards
its2026development,allstakeholdersare
invitedtoparticipate,
learnandact,connecting
insights,
applyingshared
intelligenceanddemonstrating
measurable
progresstogether.ExecutivesummaryTheGlobal
Data
PartnershipAgainst
Forced
Labour
usesfederationandagenticAItotransformfragmenteddata
intosharedintelligence–drivingcoordinated,
privacy-preservingglobalactionagainstforced
labour.Harnessing
Dataand
IntelligenceforCollectiveAdvantage:EndingForcedLabour
inGlobal
Supply
Chains4The
problem:The
vicious
cycleofforcedlabourand
datafragmentationEvenasglobalefforts
expand,forced
labour
persistsamidfragmenteddata,
misaligned
incentivesanddisconnectedsystemsofaccountability.performedwithoutthe
person’sfreeand
informed
consent,
includingwheretheycannot
leavethejob
whentheywish.6Theterm
“modernslavery”is
broader.7
It
includes
forced
labour
butalsoencompasses
humantraffickingand
practices
resemblingslavery,such
asforced
marriageorthesale
of
children.Accordingto
ILOestimatesfrom2022,
nearly28
million
peoplearetrapped
inforced
labourworldwide,
includingabout
17
million
in
private-sectorsupplychains.8
This
representsan
increase
ofaround2.7
millionsince2016,
underscoringthe
needtoaddress
rootcauses,close
datavisibility
spotsandtostrengthenvictim
protection.9The
ILO
Forced
LabourConvention,
1930(No.29)definesforced
labouras“allwork
or
service
which
isexactedfromany
person
underthemenaceofany
penaltyandforwhichthe
person
has
notoffered
himselfor
herselfvoluntarily”.5
It
isasevereformof
labour
exploitation
that
canoccur
inanysector,countryor
supply
chain,
from
manufacturingandagriculturetoconstruction,domesticworkandtheinformal
economy.Forced
labourdependsontwocore
elements:(1)acrediblethreator
actual
penalty
(which
may
includeviolence,withholding
identitydocuments,
retainingwages,chargingor
indebtingworkers
through
recruitmentfees,threatsofdeportation
ordismissal,ordebt
bondage);
and
(2)
workOverthepasttwodecades,
companies,governments,
internationalorganizationsandcivilsocietygroups
have
launched
hundredsofprogrammestotackleforced
labour.Socialaudits,
worker
hotlines,traceabilitytools,socialcompliance
programmesand
nationalenforcementof
labourlaws
haveeachactedas
important
mechanisms
inthefightagainstforced
labour.10
Governments
havecomplementedtheseeffortsthroughtrademeasures,
import
bans,country
ratingsandresearch,allofwhichstrengthen
regulatory
andmarketaccountability.
Inthe
privatesector,due-diligencesystems,ethical
recruitment
initiativesand
responsiblesourcing
programmes
have
maturedrapidlyamongagrowing
numberof
companies;
however,too
manycompaniesstill
do
notmeaningfully
investigateforced
labour
prevalence
intheirsupply
chains.Atthesametime,
modernslaveryand
supply
chain
laws
inthe
United
Kingdom,AustraliaandCanada,
import
restrictions
inthe
USand
European
UnionPersistence
amid
progress:The
enduring
natureofforcedlabourAccordingtothemostrecent
InternationalLabourOrganization(ILO)estimates,almost28
million
people
aresubjectedtoforcedlabourworldwide,acrossbothformalandinformalsectors.3
Despitedecades
ofprogressinpolicy,
advances
in
local
action,corporateduediligenceandcivilsocietyadvocacy,overallprevalencehas
notdeclined
but
has
infactincreased,pointingtoadeeper,
system-level
weaknessindetecting,preventingand
addressing
forcedlabour.
Itpersistsnot
because
its
causes
are
unknown,butbecausethedata,accountabilityand
coordinatedactionremaindisjointed.41.1BOX
1Harnessing
Dataand
IntelligenceforCollectiveAdvantage:EndingForcedLabour
inGlobal
Supply
Chains5Understandingforcedlabour1–Corporateaction:
Many
leadingcompanies
haveembedded
human
rightsduediligence,
suppliercodesofconductand
responsible
recruitment
policiesacrosstheirglobaloperationsandsupply
chains.–Industrycollaboration:
Sector
alliances
(e.g.apparel,electronics,agriculture)are
developing
sharedtoolsforaudits,workervoiceamplificationandgrievance
management.–Governmentframeworks:
National
lawsand
trade
policies
increasingly
requiresupplychain
transparencyandforced
labour
riskreporting.–Internationalcooperation:
The
ILO,InternationalOrganizationfor
Migration
(IOM)
andother
United
Nations(UN)
partnerscoordinatetechnicalassistance,global
estimatesandstandardsalignment.Why
itstill
matters:
Despitetheseadvances,most
systems
rely
on
disconnected
datasources,creating
duplication
and
informationgaps.A
trusted
and
interoperable
model
ofcollaboration
is
needed
to
connect
existingefforts,transforming
parallel
initiatives
intosharedvisibility.Theseadvances
have
builtessential
momentuminaddressingforced
labour,yet
progressremains
insufficient.
Mostsystemsstill
operateindependently,
limitingtheabilityto
see
risksacrosssupplychainsor
act
on
them
collectively.Evenwherestrongcommitment
exists,
theinformationandtools
neededfor
coordinated,system-levelaction
remaindispersed
acrossstakeholders,whooftendo
not
(or,
in
some
cases,cannot)collaborateopenly
dueto
commercial,politicalor
reputationalsensitivities.(EU),anddue-diligence
legislation
inGermany,France,
NorwayandSwitzerlandare
strongexternaldriversof
change.11,12
Legislative
progress
across
EastAsia,South-EastAsiaandtheGulfCooperationCouncilhasaddedfurthermomentum,
whilehundredsofglobalbrands
invest
inworkervoiceplatformsandtraceabilitytechnologies.13,14Eachoftheseeffortsgeneratesvastamountsofdata,
onsuppliers,recruitment,enforcementandworkerconditions,butmostof
it
remains
lockedwithin
institutionalboundariesorincompatiblesystems.Globalsupplychainsconnect
millionsof
enterprises
and
hundredsofmillionsofworkers,
but
dataand
informationabout
labourconditionswithin
them
is
uneven,siloedandoften
inaccessible.Governmentscollect
inspectionand
migrationdata;
businessesgatherauditandsupplier
information;non-governmentalorganizations(NGOs)andtrade
unionsdocumentworkerexperiencesandgrievances.Globalestimates,statisticalguidelines,academic
research,grievance
mechanismsanddigital
platforms
haveexpandedtheoveralldatalandscape.15
Eachsource
offers
greatvalue
onitsown,yet
rarely
interactswithothers.16
Thisfragmentation
makes
itdifficulttoconsistentlyand
reliably
identify
patternsofrisk,target
prevention
effortsor
measure
progresseffectively.17
The
result
isan
incomplete
pictureofthe
issueat
hand
and
limitedcollectivecapacityto
prevent
it.Thestructuralrootsoffragmentation:Data,incentives,trustandgovernancegapsHarnessing
Dataand
IntelligenceforCollectiveAdvantage:EndingForcedLabour
inGlobal
Supply
Chains6What’salreadyhappeninginbusiness
and
policy1.2BOX
2Atthesametime,
incentivestoshareor
even
collect
dataare,
in
manycases,weak.Whenthe
benefits
oftransparencyare
uncertain,the
risks
highorexposure
uncomfortable,stakeholders
hesitatetodisclose
information.
Uneven
incentivesand
limited
capacityfordisclosureallow
informationgapsto
persistacrossthesystem,
particularlywherecommercialconfidentiality,
legal
mandatesor
limited
technical
infrastructureconstrainengagement.Compoundingthese
barriersare
persistentdeficitsoftrustandgovernance.
Privacy,
sovereigntyand
reputationalconcernsdeter
collaboration,while
longstanding
mistrust
betweensectorsreinforcessilosand
limits
data
exchange,
evenwhereobjectivesalign.
No
shared
governanceframeworkexiststoalign
accountability
ormeasurecollective
impact,and
informationtendstoflowverticallywithinsectors
rather
thanhorizontallyacrossthem.Thisfragmentation
is
reinforced
bydeeperstructural
barriersthatshape
howdata,
incentives,trustand
governance
interact.
Informationaboutforcedlabour
isabundant
insomeareasyet
absent
inothers,especially
inthe“first
mile”ofproductionor
informalwork,whereconditions
remain
largelyinvisibleand
under-documented.
Eachactorgathers
datawithintheirown
mandate,
usingdifferenttools,standardsand
incentives.Assuch,existing
sourcesvarywidely
inqualityand
rarely
align
onstandardsor
interoperability,whileworkersoftenunder-reportexploitationduetofearof
retaliation
or
lackofaccessto
reliable
mechanisms.18
It
isworth
notingthatdifferences
incollection
methods,
verificationstandardsand
reporting
incentivescan
produce
misleadingor
incomplete
information.Somedatasets
may
reflectcommercial,
politicalor
methodological
bias,
underscoringthe
importance
ofvalidationandtriangulationacross
multiplesources
beforedrawingconclusions.Examplesofdatatypes:Workersurveys,hotlinedata,
union
reports,
NGOcasefiles,
survivortestimoniesTypicalsources:
NGOs,unions,worker
voice
platformsRelevanceto
impact:
Revealslivedexperience,
riskpatternsand
hidden
coercionUniverse:
PublicsectorExamplesofdatatypes:Socialaudit
reports,suppliercompliancedata,
recruitmentagency
records,grievance
dataTypicalsources:Companies,auditors,supplychain
platformsRelevancetoimpact:Offersoperationalvisibility
andcomplianceevidenceExamples
of
data
types:
Labour
inspections,
prosecutions,
migrationand
borderdata,humanitarianassessmentsTypicalsources:Governmentministries,
enforcementagenciesRelevancetoimpact:Anchorsprevalencedataandsupports
policydesignForced
labourdatatodayspansthree
broad
universes(corporate,civilsociety
and
public-
sectorsystems)asdescribed
byTechAgainst
Trafficking’sThree
Universesof
Data.Thechallenge
is
notscarcity
butfragmentation:connectingthese
universessecurely
iswhat
the
Partnershipseekstoachieve.Universe:CorporatesectorSource:Tech
Against
Trafficking.(2024).The
current
landscape
of
data
sharing.Building
an
effective
data
ecosystem
toaddress
forced
labor
in
global
supply
chains,pp.24–32.The
diversity
of
forced
labour
data(Tech
Against
Trafficking’s
Three
Universes
of
Data)Harnessing
Dataand
IntelligenceforCollectiveAdvantage:EndingForcedLabour
inGlobal
Supply
Chains7Universe:Civil
societyBOX3Source:World
Economic
Forum1Data
and
measurement
challenge–Information
is
collected
in
differentformats,
languagesandlevelsofdetail
depending
on
theactorsinvolved,leadingtofragmentation
andinconsistency.–Limited
interoperability
is
caused
by
a
lackofcommondatastandardsortaxonomies
tolinkauditresults,
inspectionfindings
and
workerfeedback.–Stakeholderslackconsensus
onwhichindicatorsdefineprogressor
howtomeasureprevalenceconsistently,resultinginmeasurement
uncertainty.–Eachactor
sees
only
afragment
ofthe
supply
chain,limiting
the
ability
to
identify
risks
or
verifyconditionsbeyondtheirimmediate
reach.2Incentive
challenge–Sharingdatacan
appear
riskywithoutclearcollective
benefit,creating
hesitation
todisclose
informationthat
mightexpose
weaknessesor
invitescrutiny.–Businessesfacecommercialconfidentiality
and
reputationalconcerns;governments
prioritizesovereigntyand
legal
mandates;and
manyactors–
includingcivilsocietyorganizations,
smallenterprisesand
localauthorities
–operatewith
limited
resourcesor
infrastructure
forsecuredata
management.–Privacyobligationsand
ethical
considerations
regardingsensitiveworkeroroperational
data
furtherdiscourageopen
sharing.3
Trust
challenge–Privacyandsecurity
concerns
limit
collaboration.–Historical
mistrustamongsectors
discourages
openexchange.–Withoutassurancethatdatawill
be
used
responsiblyand
reciprocally,evenwell-
intentionedactorsstay
siloed.4Governancechallenge–Existing
initiatives
lackan
overarchingframework
to
align
accountability
andmeasurecollective
impact.–Informationflowsverticallywithinsectors
but
rarely
horizontallyacrossthem.LackoftrverifiabgovernaunlandmeChallengeasuWeakicollnabBOX
4FIGURE
1Thevicious
cycleofFoursystemicchallenges:Data,incentives,trustandgovernanceHarnessing
Dataand
IntelligenceforCollectiveAdvantage:EndingForcedLabour
inGlobal
Supply
Chains8fragmentationTheviciouscycleoffragmentation>ethicalestandswithdstedofandsafegardcentoratckuardatfrementiicooeve<snasLasrThestructuralbarriersoutlinedabovedo
not
operate
in
isolation.Together,they
reinforce
one
anothertocreateaself-perpetuatingcycleinwhich
limitedvisibilityconstrainsaccountability,weakaccountability
dampensincentivesandalack
oftrust
preventscollaboration.Thisdynamicexplainswhyprogressremainsslowevenasawarenessand
regulationincrease:informationgrows,butintelligence
does
not.In
practice,thisviciouscycle
manifests
inthree
interlinkedways:1Fragmented
visibility:Data
from
audits,inspections,
regulatorsandsupplychaininformation
isoftenscatteredacross
multiple
organizationsandstakeholders,
makingitchallengingtocombine
and
analyse
it
effectivelyto
identify
patternsofrisk
or
rootcauses.2Duplicated
effort:Stakeholders
oftenassessthesame
limitedsetofworkplaces
or
suppliers,
ratherthan
buildingononeanother’s
findingstoexpandvisibilitytothosecurrently
unseen.
Intheabsenceof
interoperableframeworks,the
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生态恢复工程施工技术方案
- 建筑物防腐保温工程总结报告方案
- 城中村道路拓宽改建方案
- 建筑节能技术推广方案
- 施工材料采购订单管理系统方案
- 2026年汽车维修质量管理与检验流程考核题库
- 2026年网络运营专员实务能力考核练习题
- 2026年医学基础知识模拟考试题集
- 2026年医学考研生物化学知识要点与练习题
- 2026年外语翻译专业资格考试实务应用模拟题
- 中学生冬季防溺水主题安全教育宣传活动
- 2026年药厂安全生产知识培训试题(达标题)
- 2026年陕西省森林资源管理局局属企业公开招聘工作人员备考题库及参考答案详解1套
- 冷库防护制度规范
- 承包团建烧烤合同范本
- 口腔种植牙科普
- 2025秋人教版七年级全一册信息科技期末测试卷(三套)
- 抢工补偿协议书
- 2026年广东省佛山市高三语文联合诊断性考试作文题及3篇范文:可以“重读”甚至“重构”这些过往
- 山东省青岛市城阳区2024-2025学年九年级上学期语文期末试卷(含答案)
- 安全生产考试点管理制度(3篇)
评论
0/150
提交评论