八年级数学上册(苏科版)第二章《实数》第1课时:无理数的引入与实数的初步认识教学设计_第1页
八年级数学上册(苏科版)第二章《实数》第1课时:无理数的引入与实数的初步认识教学设计_第2页
八年级数学上册(苏科版)第二章《实数》第1课时:无理数的引入与实数的初步认识教学设计_第3页
八年级数学上册(苏科版)第二章《实数》第1课时:无理数的引入与实数的初步认识教学设计_第4页
八年级数学上册(苏科版)第二章《实数》第1课时:无理数的引入与实数的初步认识教学设计_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

八年级数学上册(苏科版)第二章《实数》第1课时:无理数的引入与实数的初步认识教学设计一、教学内容分析从《义务教育数学课程标准(2022年版)》审视,本节课属于“数与代数”领域,是学生数系扩张历程中的关键一步。知识技能图谱上,它要求学生从已知的有理数出发,经历无理数的发现过程,理解其“无限不循环”的本质特征,并初步建立实数的概念框架,明确实数与数轴上的点一一对应的关系。这既是前一阶段“数的开方”知识的自然延伸,也为后续学习二次根式、函数、解析几何等奠基,起着承上启下的枢纽作用。过程方法路径上,课标强调通过具体实例,让学生经历从具体到抽象、从特殊到一般的认知过程,体验数学探究的基本方法。本课可设计“探究发现归纳应用”的活动链,引导学生像数学家一样,通过操作、计算、质疑、论证,主动建构无理数的概念,发展科学探究精神和严谨的逻辑推理能力。素养价值渗透方面,本课是培育学生数感、符号意识、推理能力和模型观念的绝佳载体。无理数的发现过程蕴含着数学发展中的理性精神与批判意识,数轴模型的构建则深刻体现了“数形结合”这一核心思想,对于培养学生用数学的眼光观察现实世界,用数学的思维思考现实世界具有重要意义。基于“以学定教”原则进行学情研判。学生的已有基础与障碍在于:他们已熟练掌握有理数的概念、运算及在数轴上的表示,并初步接触了平方根、立方根。然而,从“可表示为分数”的有理数思维定势,跨越到“无限不循环”的无理数认知,存在显著的认知冲突和抽象思维挑战。部分学生可能难以真正理解“无限不循环”的意涵,或对2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​这类数是否“真实存在”心存疑惑。针对此,教学调适策略是:充分利用几何直观(如拼图、单位正方形对角线)和计算探索(如用计算器进行2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​的十进制展开),化抽象为具体。在过程评估设计上,将通过追问(如“你能找到一个平方等于2的分数吗?”)、观察小组讨论、分析随堂生成的错例等方式,动态诊断学生的理解层次,并为不同认知风格的学生提供多元的表征支持(如几何模型、数值计算、逻辑推理),实施分层引导。二、教学目标知识目标:学生通过操作探究与推理分析,能准确陈述无理数的定义(无限不循环小数),并列举常见的无理数类型(如开方开不尽的数、圆周率π\piπ等);能清晰界定实数的概念,并初步对实数进行合理分类;理解实数与数轴上的点之间的一一对应关系。能力目标:学生能运用计算、反证等方法,论证2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​不是有理数,发展逻辑推理和批判性思维能力;能通过构造直角三角形等几何方式,在数轴上找到表示无理数的点,强化数形结合与动手操作能力;能在具体情境中辨识无理数,并初步进行实数的大小比较。情感态度与价值观目标:学生在重温无理数发现史的过程中,感受数学知识源于实践又不断超越直观的理性魅力,体会数学的确定性与发展性;在小组协作探究中,养成乐于分享、敢于质疑、严谨求实的科学态度。科学(学科)思维目标:重点发展学生的抽象思维与演绎推理思维。通过从具体数值(如2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​的计算结果)中抽象出“无限不循环”这一普遍属性,形成无理数概念;通过“假设2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​是有理数”导出矛盾,体验反证法的逻辑力量,提升思维的严密性。评价与元认知目标:引导学生运用“定义”作为标尺,评价一个数是否为无理数;在课堂小结环节,鼓励学生反思探索无理数概念时遇到的困难及克服策略,比较几何探究与代数推理的不同路径,提升对数学学习方法的元认知水平。三、教学重点与难点教学重点:无理数概念的建立。其确立依据在于,从课程标准看,无理数是实数概念形成的核心基石,是贯穿初等数学的“大概念”;从学科体系看,它是数系从有理数扩张到实数的质变点,不理解无理数,后续关于实数的所有运算与性质都将成为无源之水。从中考视角分析,对无理数概念的辨识与理解是基础且高频的考点。教学难点:对“无限不循环小数”本质的理解及2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​是无理数的证明。其预设依据源于学情:学生首次接触“无限”且“不循环”这种超越有限经验的数学对象,认知跨度大;证明2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​不是有理数需要运用反证法,逻辑链条较长,且涉及对“互质”概念的灵活运用,是思维上的难点,也是作业和考试中的典型失分点。突破方向在于,先用计算器展示其“算不尽”的直观,再用几何拼图引发认知冲突,最后通过精巧设问引导学生一步步完成推理。四、教学准备清单1.教师准备1.1媒体与教具:多媒体课件(含无理数发现史微视频、2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​小数点后多位展示动画);几何画板动态演示“在数轴上找点”;两个全等的等腰直角三角形纸板。1.2学习材料:设计分层学习任务单(含探究引导、分层练习题);准备实物投影仪用于展示学生作品。2.学生准备2.1课前预习:复习有理数的定义与分类;了解毕达哥拉斯学派与希帕索斯的故事(阅读简史材料)。2.2学具携带:计算器、直尺、圆规、练习本。五、教学过程第一、导入环节1.情境创设与认知冲突1.1(教师展示两个全等的等腰直角三角形)同学们,如果每个直角三角形的腰长都是1,那么拼成的这个正方形的面积是多少?(学生易答:2。)很好,面积是2。那么它的边长呢?1.2我们设边长为aaa,则有a2=2a^2=2a2=2。aaa是几?你能找到一个确切的分数或小数来表示它吗?大家拿出计算器,试着算算2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">1.414213562......结果是1.414213562...而且好像永远算不完。)“老师,它是不是循环小数?我们多算几位看看...”2.提出核心问题2.1大家发现了一个“怪数”:它的平方等于2,但它本身却写不成一个有限小数或循环小数。它到底是不是一个“数”?在我们学过的有理数家族里,能找到它的位置吗?今天,我们就一起来揭开这类神秘数字的面纱。3.明晰学习路径3.1本节课,我们将首先像一位侦探一样,用推理证明2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​不是有理数;然后为这类“新数”正式命名——无理数;最后,把有理数和无理数统合到一个更庞大的家族——实数中,并探索它们如何在数轴上“安家落户”。第二、新授环节任务一:追本溯源——证明√2不是有理数教师活动:首先,引导学生明确论证目标:证明2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​不能表示为两个整数之比(分数)。提出反证法思路:“我们先假设一个相反的情况成立,看看会导致什么结果。”带领学生一步步书写:假设2=pq\sqrt{2}=\frac{p}{q}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​=qp​(p,q互质,且q≠0),两边平方得2=p2q22=\frac{p^2}{q^2}2=q2p2​,即p2=2q2p^2=2q^2p2=2q2。关键性提问:“从这个式子,你能判断p的奇偶性吗?为什么?”引导学生得出p是偶数,设p=2k。代入得4k2=2q24k^2=2q^24k2=2q2,即q2=2k2q^2=2k^2q2=2k2。继续追问:“现在,q又是什么数?这与我们最初的什么假设矛盾了?”最后总结:“看,这个矛盾说明我们最初的假设‘√2是有理数’是错误的。”学生活动:跟随教师的引导,理解反证法的逻辑起点。积极思考关键问题,尝试推理p和q的奇偶性变化。在教师引导下,完成整个推导过程,并理解“互质”假设在推导中的核心作用。最终理解矛盾所在,认同“√2不能写成分数形式”的结论。即时评价标准:1.逻辑跟随:能否理解每一步推导的目的,而非机械记忆。2.关键点突破:能否独立或经提示后,分析出p为偶数是推理的转折点。3.矛盾阐释:能否清晰说出最终得出的矛盾是什么(p和q都含有因子2,与“互质”假设矛盾)。形成知识、思维、方法清单:★核心结论:2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​不是有理数。它不能表示为两个整数的比。▲关键方法:反证法。当要证明某个结论“不是”什么时,可以先假设“它是”,然后推导出逻辑矛盾,从而证明原结论。●思维要点:论证依赖于“互质”的设定和整数的奇偶性分析,体现了数学推理的严谨性。“同学们,这个证明就像一场精彩的辩论,我们设下‘圈套’,最终让假设不攻自破。”任务二:概念生成——概括无理数的特征与定义教师活动:引导发散:“除了2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​,还有哪些数也有这种‘算不尽、不循环’的特性?请举例。”学生可能提到3\sqrt{3}3<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​、圆周率π\piπ等。教师利用课件动态展示3\sqrt{3}3<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​、π\pi0.1010010001...0.1010010001...(每两个1之间0依次多一个)等数的十进制展开。提问:“这些数和我们熟悉的有理数(有限小数、无限循环小数)根本区别在哪里?”引导学生对比归纳,提炼出“无限不循环”这一核心特征。最后,给出无理数的规范定义:无限不循环小数叫做无理数。并强调:“注意,是‘无限’且‘不循环’,两个条件缺一不可。”学生活动:积极举例,并观察教师展示的各种例子。对比有理数的特征,小组讨论后尝试用自己的语言描述这类“新数”的特点。最终理解并记忆无理数的定义。尝试判断教师给出的新例子(如0.3̇,1....)是否属于无理数。即时评价标准:1.举例迁移:能否举出除2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​、π\piπ外的其他无理数实例。2.特征概括:能否准确归纳出“无限不循环”这一本质特征,而非仅停留在“算不尽”的直观。3.概念辨析:能否运用定义正确判断简单的小数是否为无理数。形成知识、思维、方法清单:★无理数定义:无限不循环小数。●常见类型:(1)开方开不尽的数,如2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​,53\sqrt[3]{5}35<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​;(2)圆周率π\piπ及某些含有π\piπ的数;(3)人为构造的无限不循环小数,如0.1010010001...。▲概念辨析:判断一个数是否为无理数,关键看其小数部分是否“无限”且“不循环”。无限循环小数可以化成分数,是有理数。“大家记住,无理数并不是‘没有道理’的数,而是‘不能表示为整数比的数’,这个名字有点历史误会。”任务三:体系建构——初识实数及其分类教师活动:提问:“现在,我们认识了有理数和无理数。它们之间是什么关系?能把我们学过的所有‘数’放在一起,给个总称吗?”引出实数的概念:有理数和无理数统称为实数。通过韦恩图或树状图,与学生一起构建实数的分类体系。强调分类标准:按定义(是否为无限不循环小数)分为有理数和无理数;按符号分为正实数、0、负实数。进行辨析练习:“请判断‘实数不是有理数就是无理数’、‘带根号的数都是无理数’这些说法对吗?”学生活动:理解“统称”的含义,知晓实数是有理数和无理数的并集。参与分类图的构建,理清从属关系。对辨析问题进行思考和讨论,加深对概念外延的理解,例如认识到4=2\sqrt{4}=24<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​=2是有理数,从而明确“带根号的数不一定无理”。即时评价标准:1.体系理解:能否理解实数、有理数、无理数三个概念之间的包含关系。2.分类操作:能否根据定义对给定的实数(如−13\frac{1}{3}−31​,7\sqrt{7}7<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​,0,3.14,π\piπ)进行正确分类。3.误区澄清:能否识别并解释关于实数分类的常见错误说法。形成知识、思维、方法清单:★实数概念:有理数和无理数统称为实数。这是目前我们所学的最大的数集。★实数分类(按定义):实数分为有理数(有限小数或无限循环小数)和无理数(无限不循环小数)。●重要澄清:判断一个数是不是无理数,必须化简或分析到最后形式。例如,4\sqrt{4}4<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​化简后为2,是有理数;而π2\frac{\pi}{2}2π​虽然含有π\piπ,但它本身就是一个确定的无限不循环小数,也是无理数。“我们把数域从有理数‘扩军’到了实数,现在我们的‘武器库’更加强大了!”任务四:形数统一——探究实数与数轴上的点教师活动:回顾旧知:“我们知道,每一个有理数都可以用数轴上的一个点来表示。那么,无理数呢?比如2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​,能在数轴上找到它的位置吗?”引导学生利用几何直观:构造一个两直角边均为1的直角三角形,斜边即为2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​。演示如何以原点为圆心,斜边长为半径画弧,与数轴正半轴的交点即表示2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​。追问:“那−2\sqrt{2}−2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​呢?3\sqrt{3}3<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​呢?”推广结论:“事实上,每一个实数(无论有理还是无理)都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。”即实数与数轴上的点一一对应。学生活动:观察教师的几何作图演示,理解如何在数轴上“构造”出表示2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​的点。在任务单上尝试模仿,找到表示2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​的点。思考并回答教师关于负无理数和3\sqrt{3}3<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​的提问。最终理解并认同“一一对应”的结论。即时评价标准:1.操作理解:能否理解利用勾股定理在数轴上定位无理数的几何原理。2.结论归纳:能否从特殊(2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​)推广到一般,说出实数与数轴点的一一对应关系。3.逆向思维:当看到数轴上一个任意点时,能否意识到它一定对应一个确定的实数(可能是有理数,也可能是无理数)。形成知识、思维、方法清单:★核心关系:实数与数轴上的点一一对应。这是实数完备性的直观体现。●几何方法:利用勾股定理,可以在数轴上作出表示n\sqrt{n}n<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​(n为正整数)的点。这是“以形助数”的典范。▲数学思想:数形结合思想。将抽象的数与直观的图形(数轴)联系起来,使得实数的存在性和顺序性变得可视、可感。“看,这个点(指着2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​对应的点)虽然我们不能用有限小数写出来,但它确确实实、独一无二地存在于数轴上,这就是数学的确定性美。”第三、当堂巩固训练设计核心:构建分层、变式的训练体系,并提供即时反馈。基础层(全体必做,直接应用核心概念):1.判断下列说法是否正确,并说明理由:(1)无理数都是无限小数。(2)无限小数都是无理数。(3)带根号的数都是无理数。2.将下列各数填入相应的集合:−52,9,0,3.14159,π,7,0.12˙3˙\frac{5}{2},\sqrt{9},0,3.14159,\pi,\sqrt{7},0.1\dot{2}\dot{3}−25​,9<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​,0,3.14159,π,7<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​,0.12˙3˙。有理数集合:{…};无理数集合:{…};正实数集合:{…}。综合层(多数学生尝试,在新情境中综合运用):3.如图,数轴上点A表示的数可能是()A.5\sqrt{5}5<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​B.10\sqrt{10}10<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​C.15\sqrt{15}15<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​D.20\sqrt{20}20<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​(需估算大小)。4.已知边长为1的正方形的对角线长为2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​,请利用这个结论,在数轴上准确标出表示2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​和3\sqrt{3}3<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​的点(要求保留作图痕迹)。挑战层(学有余力者选做,开放探究):5.我们知道4=2\sqrt{4}=24<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​=2是有理数,2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​是无理数。那么,n\sqrt{n}n<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​(n是正整数)在什么情况下是有理数?什么情况下是无理数?你能提出一个猜想并尝试解释吗?反馈机制:基础层题目通过全班齐答或快速互查解决,教师点评易错点(如第1题第2小句)。综合层题目请学生上台展示第4题作图过程,并讲解第3题的估算策略,教师补充优化。挑战层题目作为思考题,邀请有想法的学生分享其猜想,教师给予肯定并引导课下继续探究,不做统一要求。“第2题把9\sqrt{9}9<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​放进无理数集合的同学要小心啦,化简是第一步!”“谁来展示一下你是怎么在数轴上‘搭建’出3\sqrt{3}3<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​的?哦,先构造√2,再以它为直角边…思路很清晰!”第四、课堂小结知识整合:引导学生以“实数”为中心,用思维导图的形式回顾本节课的核心概念链:从证明2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​不是有理数→发现并定义“无理数”(无限不循环小数)→有理数与无理数“统称”为实数→实数与数轴上的点“一一对应”。鼓励学生上台绘制并讲解。方法提炼:“今天我们用了哪些重要的数学方法攻克了‘无理数’这个堡垒?”师生共同回顾:反证法(逻辑推理)、从特殊到一般(归纳定义)、数形结合(在数轴上找点)、估算与辨析。作业布置:必做题(巩固基础):1.完成课本对应练习,重点辨识无理数与实数分类。2.在数轴上标出表示−2\sqrt{2}−2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论