黑龙江省佳木斯市一中2026届数学高一上期末考试试题含解析_第1页
黑龙江省佳木斯市一中2026届数学高一上期末考试试题含解析_第2页
黑龙江省佳木斯市一中2026届数学高一上期末考试试题含解析_第3页
黑龙江省佳木斯市一中2026届数学高一上期末考试试题含解析_第4页
黑龙江省佳木斯市一中2026届数学高一上期末考试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省佳木斯市一中2026届数学高一上期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是幂函数,且在第一象限内是单调递减,则的值为()A.-3 B.2C.-3或2 D.32.已知p:﹣2<x<2,q:﹣1<x<2,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.平行线与之间的距离等于()A. B.C. D.4.若函数,则的单调递增区间为()A. B.C. D.5.若-4<x<1,则()A.有最小值1 B.有最大值1C.有最小值-1 D.有最大值-16.如图所示,在平面直角坐标系中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动,当圆滚动到圆心位于(2,1)时,点Р的坐标为()A. B.C D.7.函数,的值域为()A. B.C. D.8.一个扇形的面积是,它的半径是,则该扇形圆心角的弧度数是A. B.1C.2 D.9.给出下列四个命题:①底面是正多边形的棱柱是正棱柱;②四棱柱、四棱台、五棱锥都是六面体;③所有棱长相等的棱柱一定是直棱柱;④直角三角形绕其一条边所在的直线旋转一周形成的几何体是圆锥其中正确的命题个数是()A.0 B.1C.2 D.310.设是周期为的奇函数,当时,,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域是____________,单调递增区间是____________.12.将函数图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式为________.13.已知点为角终边上一点,则______.14.某圆锥体的侧面展开图是半圆,当侧面积是时,则该圆锥体的体积是_______15.在ABC中,H为BC上异于B,C的任一点,M为AH的中点,若,则λ+μ=_________16.函数在上存在零点,则实数a的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)若,求的单调区间;(2)若有最大值3,求实数的值.18.已知.(1)求函数的最小正周期及单调增区间;(2)若,,求的值.19.已知函数(其中,,)图象上两相邻最高点之间距离为,且点是该函数图象上的一个最高点(1)求函数的解析式;(2)把函数的图象向右平移个单位长度,得到函数的图象,若恒有,求实数的最小值.20.若函数的定义域为,集合,若存在非零实数使得任意都有,且,则称为上的-增长函数.(1)已知函数,函数,判断和是否为区间上的增长函数,并说明理由;(2)已知函数,且是区间上的-增长函数,求正整数的最小值;(3)如果是定义域为的奇函数,当时,,且为上的增长函数,求实数的取值范围.21.人类已进入大数据时代.目前数据量已经从级别越升到,,乃至级别.某数据公司根据以往数据,整理得到如下表格:时间2008年2009年2010年2011年2012年间隔年份(单位:年)01234全球数据量(单位:)0.50.751.1251.68752.53125根据上述数据信息,经分析后发现函数模型能较好地描述2008年全球产生的数据量(单位:)与间隔年份(单位:年)的关系.(1)求函数的解析式;(2)请估计2021年全球产生的数据量是2011年的多少倍(结果保留3位小数)?参考数据:,,,,,.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据幂函数的定义判断即可【详解】由是幂函数,知,解得或.∵该函数在第一象限内是单调递减的,∴.故.故选:A.【点睛】本题考查了幂函数的定义以及函数的单调性问题,属于基础题2、B【解析】将相互推导,根据能否推导的情况判断出充分、必要条件.【详解】已知p:﹣2<x<2,q:﹣1<x<2;∴q⇒p;但p推不出q,∴p是q的必要非充分条件故选:B【点睛】本小题主要考查充分、必要条件的判断,属于基础题.3、C【解析】,故选4、A【解析】令,则,根据解析式,先求出函数定义域,结合二次函数以及对数函数的性质,即可得出结果.【详解】令,则,由真数得,∵抛物线的开口向下,对称轴,∴在区间上单调递增,在区间上单调递减,又∵在定义域上单调递减,由复合函数的单调性可得:的单调递增区间为.故选:A.5、D【解析】先将转化为,根据-4<x<1,利用基本不等式求解.【详解】又∵-4<x<1,∴x-1<0∴-(x-1)>0∴.当且仅当x-1=,即x=0时等号成立故选:D【点睛】本题主要考查基本不等式的应用,还考查了转化求解问题的能力,属于基础题.6、D【解析】如图,根据题意可得,利用三角函数的定义和诱导公式求出,进而得出结果.【详解】如图,由题意知,,因为圆的半径,所以,所以,所以,即点.故选:D7、A【解析】首先由的取值范围求出的取值范围,再根据正切函数的性质计算可得;【详解】解:因为,所以因为在上单调递增,所以即故选:A8、C【解析】由题意首先求得弧长,然后求解圆心角的弧度数即可.【详解】设扇形的弧长为,由题意可得:,则该扇形圆心角的弧度数是.本题选择C选项.【点睛】本题主要考查扇形面积公式,弧度数的定义等知识,意在考查学生的转化能力和计算求解能力.9、B【解析】利用几何体的结构特征,几何体的定义,逐项判断选项的正误即可【详解】解:①底面是正多边形,侧棱与底面垂直的棱柱是正棱柱;所以①不正确;②四棱柱、四棱台、五棱锥都是六面体;满足多面体的定义,所以②正确;③所有棱长相等的棱柱一定是直棱柱;不满足直棱柱的定义,所以③不正确;④直角三角形绕直角边所在的直线旋转一周形成的几何体是圆锥.所以④不正确;故选:B10、A【解析】根据f(x)是奇函数可得f(﹣)=﹣f(),再根据f(x)是周期函数,周期为2,可得f()=f(﹣4)=f(),再代入0≤x≤1时,f(x)=2x(1﹣x),进行求解.【详解】∵设f(x)是周期为2的奇函数,∴f(﹣x)=﹣f(x),∵f(﹣)=﹣f(),∵T=2,∴f()=f(﹣4)=f(),∵当0≤x≤1时,f(x)=2x(1﹣x),∴f()=2×(1﹣)=,∴f(﹣)=﹣f()=﹣f()=﹣,故选A【点睛】此题主要考查周期函数和奇函数的性质及其应用,注意所求值需要利用周期进行调节,此题是一道基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】先求二次函数值域,再根据指数函数单调性求函数值域;根据二次函数单调性与指数函数单调性以及复合函数单调性法则求函数增区间.【详解】因为,所以,即函数的值域是因为单调递减,在(1,+)上单调递减,因此函数的单调递增区间是(1,+).【点睛】本题考查复合函数值域与单调性,考查基本分析求解能力.12、.【解析】由题意利用函数的图象变换规律,即可得出结论.【详解】将函数图象上所有的点向右平行移动个单位长度,可得函数为,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),可得函数为.故答案为:.13、5【解析】首先求,再化简,求值.【详解】由题意可知.故答案为:5【点睛】本题考查三角函数的定义和关于的齐次分式求值,意在考查基本化简和计算.14、【解析】设圆锥的母线长为,底面半径为,则,,,,所以圆锥的高为,体积为.考点:圆锥的侧面展开图与体积.15、##0.5【解析】根据题意,用表示出与,求出λ、μ的值即可【详解】设,则=(1﹣k)+k=,∴故答案为:16、【解析】由可得,求出在上的值域,则实数a的取值范围可求【详解】由,得,即由,得,又∵函数在上存在零点,即实数a的取值范围是故答案为【点睛】本题考查函数零点的判定,考查函数值域的求法,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)递减区间为,递增区间;(2).【解析】(1)当时,设,根据指数函数和二次函数的单调性,结合复合函数的单调性,即可求解;(2)由题意,函数,分,和三种情况讨论,结合复合函数的单调性,即可求解.【详解】(1)当时,,设,则函数开口向下,对称轴方程为,所以函数在单调递增,在单调递减,又由指数函数在上为单调递减函数,根据复合函数的单调性,可得函数在单调递减,在单调递增,即函数的递减区间为,递增区间.(2)由题意,函数,①当时,函数,根据复合函数的单调性,可得函数在上为单调递增函数,此时函数无最大值,不符合题意;②当时,函数,根据复合函数单调性,可得函数在在单调递增,在单调递减,当时,函数取得最大值,即,解得;③当时,函数,根据复合函数的单调性,可得函数在在单调递减,在单调递增,此时函数无最大值,不符合题意.综上可得,实数的值为.【点睛】本题主要考查了指数函数的图象与性质,以及复合函数的单调性的判定及应用,其中解答中熟记指数函数的图象与性质,二次函数的性质,以及复合函数的单调性的判定方法是解答的关键,着重考查推理与运算能力,属于中档试题.18、(1)最小正周期,单调增区间为,;(2).【解析】(1)将函数解析式化简为,可得周期为;将看作一个整体代入正弦函数的增区间可得函数的单调增区间为,.(2)由(1)可得,结合条件得到,进而可得,于是,,最后根据两角差的正弦公式可得结果试题解析:(1)∴函数的最小正周期.由,,得,,所以函数的单调增区间为,.(2)由(1)得,又,∴,∵,∴,∴,,∴.点睛:(1)解决三角函数问题时通常将所给的函数化简为的形式后,将看作一个整体,并结合正弦函数的相关性质求解.在解题中要注意整体代换思想的运用(2)对于给出某些角的三角函数值,求另外一些角的三角函数值的问题,解题关键在于“变角”,即用已知的角表示所求的角,使其角相同或具有某种关系19、(1)(2)最小值为4【解析】(1)由图象上两相邻最高点之间的距离为,可知周期,点是该函数图象上的一个最高点,可知,故,将点代入解析式即可得,函数解析式即可求得;(2)利用函数平移的性质即可求得平移后的函数,由恒有,可知函数在处取得最大值,即可求出实数取最小值.【小问1详解】根据题意得函数的周期为,即,故,∵点是该函数图象上的一个最高点,∴,即,将点代入函数解析式得,,即,则,又∵,∴,故.【小问2详解】∵函数,∴∵恒有成立,∴在处取得最大值,则,,得∵,,故当时,实数取最小值4.20、(1)是,不是,理由见解析;(2);(3).【解析】(1)利用给定定义推理判断或者反例判断而得;(2)把恒成立的不等式等价转化,再求函数最小值而得解;(3)根据题设条件,写出函数f(x)的解析式,再分段讨论求得,最后证明即为所求.【详解】(1)g(x)定义域R,,g(x)是,取x=-1,,h(x)不是,函数是区间上的增长函数,函数不是;(2)依题意,,而n>0,关于x的一次函数是增函数,x=-4时,所以n2-8n>0得n>8,从而正整数n的最小值为9;(3)依题意,,而,f(x)在区间[-a2,a2]上是递减的,则x,x+4不能同在区间[-a2,a2]上,4>a2-(-a2)=2a2,又x∈[-2a2,0]时,f(x)≥0,x∈[0,2a2]时,f(x)≤0,若2a2<4≤4a2,当x=-2a2时,x+4∈[0,2a2],f(x+4)≤f(x)不符合要求,所以4a2<4,即-1<a<1.因为:当4a2<4时,①x+4≤-a2,f(x+4)>f(x)显然成立;②-a2<x+4<a2时,x<a2-4<-3a2,f(x+4)=-(x+4)>-a2,f(x)=x+2a2<-a2,f(x+4)>f(x);③x+4>a2时,f(x+4)=(x+4)-2a2>x+2a2≥f(x),综上知,当-1<a<1时,为上的增长函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论