版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届保定市重点中学高一上数学期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知幂函数的图象过点,则的值为()A. B.1C.2 D.42.若,则()A. B.-3C. D.33.下列函数中,既是奇函数,又是增函数的是()①;②;③;④A.①② B.①④C.②③ D.③④4.已知直线,若,则的值为()A.8 B.2C. D.-25.若函数的图像关于点中心对称,则的最小值为()A. B.C. D.6.已知关于的方程的两个实根为满足则实数的取值范围为A. B.C. D.7.若,分别是方程,的解,则关于的方程的解的个数是()A B.C. D.8.在空间直角坐标系中,点在轴上,且点到点与点的距离相等,则点坐标为()A. B.C. D.9.幂函数在区间上单调递增,且,则的值()A.恒大于0 B.恒小于0C.等于0 D.无法判断10.若函数的图象与轴有交点,且值域,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.圆的半径是6cm,则圆心角为30°的扇形面积是_________12.已知某扇形的半径为,面积为,那么该扇形的弧长为________.13.若,且α为第一象限角,则___________.14.已知扇形的圆心角为,半径为,则扇形的面积为______15.如图所示,正方体的棱长为,分别是棱,的中点,过直线的平面分别与棱.交于,设,,给出以下四个命题:①平面平面;②当且仅当时,四边形的面积最小;③四边形周长,是单调函数;④四棱锥的体积为常函数;以上命题中真命题的序号为___________.16.已知函数则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求值:(1)(2)2log310+log30.8118.在四面体B-ACD中,是正三角形,是直角三角形,,.(1)证明:;(2)若E是BD的中点,求二面角的大小.19.如图,在直三棱柱中,点为的中点,,,.(1)证明:平面.(2)求三棱锥的体积.20.已知的图像关于坐标原点对称.(1)求的值,并求出函数的零点;(2)若存在,使不等式成立,求实数取值范围.21.已知(1)求的值;(2)若是第三象限的角,化简三角式,并求值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】设出幂函数的解析式,利用给定点求出解析式即可计算作答.【详解】依题意,设,则有,解得,于得,所以.故选:C2、B【解析】利用同角三角函数关系式中的商关系进行求解即可.【详解】由,故选:B3、D【解析】对每个函【解析】判断奇偶性及单调性即可.【详解】对于①,,奇函数,在和上分别单增,不满足条件;对于②,,偶函数,不满足条件;对于③,,奇函数,在R上单增,符合题意;对于④,,奇函数,在R上单增,符合题意;故选:D4、D【解析】根据两条直线垂直,列方程求解即可.【详解】由题:直线相互垂直,所以,解得:.故选:D【点睛】此题考查根据两条直线垂直,求参数的取值,关键在于熟练掌握垂直关系的表达方式,列方程求解.5、C【解析】根据函数的图像关于点中心对称,由求出的表达式即可.【详解】因为函数的图像关于点中心对称,所以,所以,解得,所以故选:C【点睛】本题主要考查余弦函数的对称性,还考查了运算求解的能力,属于基础题.6、D【解析】利用二次方程实根分布列式可解得.【详解】设,根据二次方程实根分布可列式:,即,即,解得:.故选D.【点睛】本题考查了二次方程实根的分布.属基础题.7、B【解析】∵,分别是方程,的解,∴,,∴,,作函数与的图象如下:结合图象可以知道,有且仅有一个交点,故,即分类讨论:()当时,方程可化为,计算得出,()当时,方程可化,计算得出,;故关于的方程的解的个数是,本题选择B选项.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围8、B【解析】先由题意设点的坐标为,根据空间中的两点间距离公式,列出等式,求出,即可得出结果.【详解】因为点在轴上,所以可设点的坐标为,依题意,得,解得,则点的坐标为故选:B.9、A【解析】由已知条件求出的值,则可得幂函数的解析式,再利用幂函数的性质判断即可【详解】由函数是幂函数,可得,解得或当时,;当时,因为函数在上是单调递增函数,故又,所以,所以,则故选:A10、D【解析】由函数有零点,可求得,由函数的值域可求得,综合二者即可得到的取值范围.【详解】定义在上的函数,则,由函数有零点,所以,解得;由函数的值域,所以,解得;综上,的取值范围是故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、3π【解析】根据扇形的面积公式即可计算.【详解】,.故答案为:3π.12、【解析】根据扇形面积公式可求得答案.【详解】设该扇形的弧长为,由扇形的面积,可得,解得.故答案.【点睛】本题考查了扇形面积公式的应用,考查了学生的计算能力,属于基础题.13、【解析】先求得,进而可得结果.【详解】因为,又为第一象限角,所以,,故.故答案为:.14、【解析】∵扇形的圆心角为,半径为,∴扇形的面积故答案为15、①②④【解析】①连接,在正方体中,平面,所以平面平面,所以①是真命题;②连接MN,因为平面,所以,四边形MENF的对角线EF是定值,要使四边形MENF面积最小,只需MN的长最小即可,当M为棱的中点时,即当且仅当时,四边形MENF的面积最小;③因为,所以四边形是菱形,当时,的长度由大变小,当时,的长度由小变大,所以周长,是单调函数,是假命题;④连接,把四棱锥分割成两个小三棱锥,它们以为底,为顶点,因为三角形的面积是个常数,到平面的距离也是一个常数,所以四棱锥的体积为常函数;命题中真命题的序号为①②④考点:面面垂直及几何体体积公式16、【解析】根据分段函数解析式,由内而外,逐步计算,即可得出结果.【详解】∵,,则∴.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)4【解析】(1)利用分数指数幂的性质运算即可;(2)利用对数的运算性质计算可得结果.试题解析:(1),(2)2log310+log30.81=18、(1)证明见解析(2)【解析】(1)取AC的中点F,连接DF,BF,由等腰三角形的性质,先证平面BFD,再证;(2)连接FE,由(1)可得,,则即为二面角的平面角,进而求解即可【详解】(1)取AC的中点F,连接DF,BF,是正三角形,,又是直角三角形,且,,又,平面BFD,平面BFD,平面BFD,又平面BFD,.(2)连接FE,由(1)平面BFD,平面BFD,平面BFD,,,即为二面角的平面角,设,则,,,在中,,,即是直角三角形,∴,故为正三角形,∴,∴二面角的大小为.【点睛】本题考查线线垂直的证明,考查几何法求二面角,考查运算能力19、(1)证明见解析(2)【解析】(1)在平面内作出辅助线,然后根据线面平行判定定理证明即可;(2)作出三棱锥的高,将看作三棱锥的底面,利用三棱锥体积公式计算即可.【小问1详解】证明:连接,交于,连接,因为是直三棱柱,所以为中点,而点为的中点,所以,因为平面,平面,所以平面【小问2详解】解:过作于,因为是直三棱柱,点为的中点,所以,且底面,所以,因为,所以,则,所以20、(1),(2)【解析】(1)由题设知是上的奇函数.所以,得(检验符合),又方程可以化简为,从而.(2)不等式有解等价于在上有解,所以考虑在上的最小值,利用换元法可求该最小值为,故.(1)由题意知是上的奇函数.所以,得.,,由,可得,所以,,即的零点为.(2),由题设知在内能成立,即不等式在上能成立.即在内能成立,令,则在上能成立,只需,令,对称轴,则在上单调递增.∴,所以..点睛:如果上的奇函数中含有一个参数,那么我们可以利用来求参数的大小.又不等式的有解问题可以转化为函数的最值问题来处理.21、(1);(2).【解析】(1)利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理心理支持:患者心理护理
- 心脏搭桥手术后的康复护理
- 2026年重庆移通学院单招职测考试题库及答案1套
- 2026年长沙南方职业学院单招职业技能测试模拟测试卷附答案
- 2026年黔西南民族职业技术学院单招职业技能测试模拟测试卷及答案1套
- 肝硬化患者皮肤护理及预防压疮
- 2026年户外露营摄影设备品牌选择效果分析报告调研
- 直播电商直播间政策调研
- 县域烤肉连锁品牌自助模式盈利调研
- 乡镇宠物家庭寄养服务规范调研
- 房颤抢救流程护理
- 【8地RJ期末】安徽省芜湖市2024-2025学年八年级上学期期末考试地理试卷+
- 学生成长规划讲座模板
- 碧桂园资金池管理制度
- GB/T 2879-2024液压传动液压缸往复运动活塞和活塞杆单向密封圈沟槽的尺寸和公差
- 福建省厦门市2023-2024学年高二上学期期末考试英语试题(解析版)
- 高脂血症性急性胰腺炎教学查房课件
- 厦门高容纳米新材料科技有限公司高容量电池负极材料项目环境影响报告
- 当代艺术赏析课件
- GB/T 12789.1-1991核反应堆仪表准则第一部分:一般原则
- GB/T 12719-2021矿区水文地质工程地质勘查规范
评论
0/150
提交评论