四川省金堂中学2026届高一数学第一学期期末学业水平测试试题含解析_第1页
四川省金堂中学2026届高一数学第一学期期末学业水平测试试题含解析_第2页
四川省金堂中学2026届高一数学第一学期期末学业水平测试试题含解析_第3页
四川省金堂中学2026届高一数学第一学期期末学业水平测试试题含解析_第4页
四川省金堂中学2026届高一数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省金堂中学2026届高一数学第一学期期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,,则a,b,c的大小关系是()A. B.C. D.2.函数定义域是A. B.C. D.3.一个几何体的三视图如图所示,则该几何体的表面积为A. B.C. D.4.若圆锥的底面半径为2cm,表面积为12πcm2,则其侧面展开后扇形的圆心角等于()A. B.C. D.5.设函数,若对任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1﹣x2|的最小值是()A.4π B.2πC.π D.6.设,,,则A. B.C. D.7.已知,,,下列不等式正确个数有()①,②,③,④.A.1 B.2C.3 D.48.圆与圆的位置关系为()A.相离 B.相交C.外切 D.内切9.如果全集,,则A. B.C. D.10.工艺扇面是中国书面一种常见的表现形式.某班级想用布料制作一面如图所示的扇面.已知扇面展开的中心角为,外圆半径为,内圆半径为.则制作这样一面扇面需要的布料为().A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.一个扇形周长为8,则扇形面积最大时,圆心角的弧度数是__________.12.函数的定义域为_____________________13.某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.14.在正方体ABCD-A1B1C1D1中,E、F是分别是棱A1B1、A1D1的中点,则A1B与EF所成角的大小为______15.某种商品在第天的销售价格(单位:元)为,第x天的销售量(单位:件)为,则第14天该商品的销售收入为________元,在这30天中,该商品日销售收入的最大值为________元.16.从含有两件正品和一件次品b的3件产品中,按先后顺序任意取出两件产品,每次取出后不放回,取出的两件产品都是正品的概率为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知对数函数.(1)若函数,讨论函数的单调性;(2)对于(1)中的函数,若,不等式的解集非空,求实数的取值范围.18.在平面直角坐标系中,已知直线.(1)若直线在轴上的截距为-2,求实数的值,并写出直线的截距式方程;(2)若过点且平行于直线的直线的方程为:,求实数的值,并求出两条平行直线之间的距离.19.已知函数(1)利用函数单调性的定义证明是单调递增函数;(2)若对任意,恒成立,求实数取值范围20.设函数的定义域为,值域为,如果存在函数,使得函数的值域仍是,那么称是函数的一个等值域变换.(1)判断下列函数是不是函数的一个等值域变换?说明你的理由;①;②.(2)设的定义域为,已知是的一个等值域变换,且函数的定义域为,求实数的值.21.设函数,(1)根据定义证明在区间上单调递增;(2)判断并证明的奇偶性;(3)解关于x的不等式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用指数函数和对数函数的性质确定a,b,c的范围,由此比较它们的大小.【详解】∵函数在上为减函数,,∴,即,∵函数在上为减函数,,∴,即,函数在上为减函数,,即∴.故选:C.2、A【解析】根据函数成立的条件即可求函数的定义域【详解】解:要使函数有意义,则,得,即,即函数的定义域为故选A【点睛】本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.函数的定义域主要由以下方面考虑来求解:一个是分数的分母不能为零,二个是偶次方根的被开方数为非负数,第三是对数的真数要大于零,第四个是零次方的底数不能为零.3、D【解析】该几何体为半圆柱,底面为半径为1的半圆,高为2,因此表面积为,选D.4、D【解析】利用扇形面积计算公式、弧长公式及其圆的面积计算公式即可得出【详解】设圆锥的底面半径为r=2,母线长为R,其侧面展开后扇形的圆心角等于θ由题意可得:,解得R=4又2π×2=Rθ∴θ=π故选D【点睛】本题考查了扇形面积计算公式、弧长公式及其圆的面积计算公式,考查了推理能力与计算能力,属于基础题5、C【解析】首先得出f(x1)是最小值,f(x2)是最大值,可得|x1﹣x2|的最小值为函数的半个周期,根据周期公式可得答案【详解】函数,∵对任意x∈R都有f(x1)≤f(x)≤f(x2),∴f(x1)是最小值,f(x2)是最大值;∴|x1﹣x2|的最小值为函数的半个周期,∵T=2π,∴|x1﹣x2|的最小值为π,故选:C.6、B【解析】本题首先可以通过函数的性质判断出和的大小,然后通过对数函数的性质判断出与的大小关系,最后即可得出结果【详解】因为函数是增函数,,,所以,因为,所以,故选B【点睛】本题主要考查了指数与对数的相关性质,考查了运算能力,考查函数思想,体现了基础性与应用性,考查推理能力,是简单题7、D【解析】由于,得,根据基本不等式对选项一一判断即可【详解】因,,,所以,得,当且仅当时取等号,②对;由,当且仅当时取等号,①对;由得,所以,当且仅当时取等号,③对;由,当且仅当时取等号,④对故选:D8、A【解析】通过圆的标准方程,可得圆心和半径,通过圆心距与半径的关系,可得两圆的关系.【详解】圆,圆心,半径为;,圆心,半径为;两圆圆心距,所以相离.故选:A.9、C【解析】首先确定集合U,然后求解补集即可.【详解】由题意可得:,结合补集的定义可知.本题选择C选项.【点睛】本题主要考查集合的表示方法,补集的定义等知识,意在考查学生的转化能力和计算求解能力.10、B【解析】由扇形的面积公式,可得制作这样一面扇面需要的布料.【详解】解:根据题意,由扇形的面积公式可得:制作这样一面扇面需要的布料为.故选:B.【点睛】本题考查扇形的面积公式,考查学生的计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】设扇形的半径为,则弧长为,结合面积公式计算面积取得最大值时的取值,再用圆心角公式即可得弧度数【详解】设扇形的半径为,则弧长为,,所以当时取得最大值为4,此时,圆心角为(弧度)故答案为:212、【解析】,区间为.考点:函数的定义域13、【解析】设参加数学、物理、化学小组的同学组成的集合分别为,、,根据容斥原理可求出结果.【详解】设参加数学、物理、化学小组的同学组成的集合分别为,、,同时参加数学和化学小组的人数为,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为,如图所示:由图可知:,解得,所以同时参加数学和化学小组有人.故答案为:.14、【解析】解:如图,将EF平移到A1B1,再平移到AC,则∠B1AC为异面直线AB1与EF所成的角三角形B1AC为等边三角形,故异面直线AB1与EF所成的角60°,15、①.448②.600【解析】销售价格与销售量相乘即得收入,对分段函数,可分段求出最大值,然后比较【详解】由题意可得(元),即第14天该商品的销售收入为448元.销售收入,,即,.当时,,故当时,y取最大值,,当时,易知,故当时,该商品日销售收入最大,最大值为600元.故答案为:448;600.【点睛】本题考查分段函数模型的应用.根据所给函数模型列出函数解析式是基本方法16、【解析】基本事件总数6,取出的两件产品都是正品包含的基本事件个数2,由此能求出取出的两件产品都是正品的概率.【详解】从含有两件正品和一件次品的3件产品中,按先后顺序任意取出两件产品,每次取出后不放回,共包含,,,,,6个基本事件,取出的两件产品都是正品包含,2个基本事件,∴取出的两件产品都是正品的概率为,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2).【解析】(1)由对数函数的定义,得到的值,进而得到函数的解析式,再根据复合函数的单调性,即可求解函数的单调性.(2)不等式的解集非空,得,利用函数的单调性,求得函数的最小值,即可求得实数的取值范围.【详解】(1)由题中可知:,解得:,所以函数的解析式,∵,∴,∴,即的定义域为,由于,令则:由对称轴可知,在单调递增,在单调递减;又因为在单调递增,故单调递增区间,单调递减区间为.(2)不等式的解集非空,所以,由(1)知,当时,函数单调递增区间,单调递减区间为,又,所以,所以,,所以实数的取值范围.18、(1)直线的截距式方程为:;(2).【解析】(1)直线在轴上的截距为,等价于直线经过点,代入直线方程得,所以,从而可得直线的一般式方程,再化为截距式即可;(2)把点代入直线的方程为可求得,由两直线平行得:,所以,因为两条平行直线之间的距离就是点到直线的距离,所以由点到直线距离公式可得结果.试题解析:(1)因为直线在轴上的截距为-2,所以直线经过点,代入直线方程得,所以.所以直线的方程为,当时,,所以直线的截距式方程为:.(2)把点代入直线的方程为:,求得由两直线平行得:,所以因为两条平行直线之间的距离就是点到直线的距离,所以.19、(1)证明见解析(2)【解析】(1)利用单调性的定义,取值、作差、整理、定号、得结论,即可得证.(2)令,根据x的范围,可得t的范围,原式等价为,,只需即可,分别讨论、和三种情况,根据二次函数的性质,计算求值,分析即可得答案.【小问1详解】由已知可得的定义域为,任取,且,则,因为,,,所以,即,所以在上是单调递增函数【小问2详解】,令,则当时,,所以令,,则只需当,即时,在上单调递增,所以,解得,与矛盾,舍去;当,即时,在上单调递减,在上单调递增,所以,解得;当即时,在上单调递减,所以,解得,与矛盾,舍去综上,实数的取值范围是20、(1)①不是等值域变换,②是等值域变换;(2).【解析】(1)运用对数函数的值域和基本不等式,结合新定义即可判断①;运用二次函数的值域和指数函数的值域,结合新定义即可判断②;(2)利用f(x)的定义域,求得值域,根据x的表达式,和t值域建立不等式,利用存在t1,t2∈R使两个等号分别成立,求得m和n试题解析:(1)①,x>0,值域为R,,t>0,由g(t)⩾2可得y=f[g(t)]的值域为[1,+∞).则x=g(t)不是函数y=f(x)的一个等值域变换;②,即的值域为,当时,,即的值域仍为,所以是的一个等值域变换,故①不是等值域变换,②是等值域变换;(2)定义域为,因为是的一个等值域变换,且函数的定义域为,的值域为,,恒有,解得21、(1)证明见解析(2)奇函数,证明见解析(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论