版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省虎林市2026届高二数学第一学期期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在正方体的12条棱中任选3条,其中任意2条所在的直线都是异面直线的概率为()A. B.C. D.2.已知数列的通项公式为,是数列的最小项,则实数的取值范围是()A. B.C. D.3.过椭圆+=1左焦点F1引直线交椭圆于A、B两点,F2是椭圆的右焦点,则△ABF2的周长是()A.20 B.18C.10 D.164.已知直线与抛物线C:相交于A,B两点,O为坐标原点,,的斜率分别为,,则()A. B.C. D.5.已知是偶函数的导函数,.若时,,则使得不等式成立的的取值范围是()A. B.C. D.6.直线与圆的位置关系是()A.相交 B.相切C.相离 D.都有可能7.过点的直线在两坐标轴上的截距之和为零,则该直线方程为()A. B.C.或 D.或8.抛物线的顶点在原点,对称轴是x轴,点在抛物线上,则抛物线的方程为()A. B.C. D.9.已知空间向量,,,则()A.4 B.-4C.0 D.210.已知函数,,若对任意的,,都有成立,则实数的取值范围是()A. B.C. D.11.若“”是“”的充分不必要条件,则实数m的值为()A.1 B.C.或1 D.或12.已如双曲线(,)的左、右焦点分别为,,过的直线交双曲线的右支于A,B两点,若,且,则该双曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在不等边△ABC(三边均不相等)中,三个内角A,B,C所对的边分别为a,b,c,且有,则角C的大小为________14.设函数的导函数为,已知函数,则______.15.若,满足不等式组,则的最大值为________.16.数列中,,,,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直三棱柱中,、、、分别为中点,.(1)求证:平面(2)求二面角的余弦值18.(12分)如图,在四棱锥中P﹣ABCD中,底面ABCD是边长为2的正方形,BC⊥平面PAB,PA⊥AB,PA=2(1)求证:PA⊥平面ABCD;(2)求平面PAD与平面PBC所成角的余弦值19.(12分)小张在2020年初向建行贷款50万元先购房,银行贷款的年利率为4%,要求从贷款开始到2030年要分10年还清,每年年底等额归还且每年1次,每年至少要还多少钱呢(保留两位小数)?(提示:(1+4%)10≈1.48)20.(12分)已如空间直角标系中,点都在平面内,求实数y的值21.(12分)已知的内角的对边分别为a,,若向量,且(1)求角的值;(2)已知的外接圆半径为,求周长的最大值.22.(10分)如图,在平面直角坐标系xOy中,已知抛物线C:y2=4x的焦点为F,准线为l,过点F且斜率大于0的直线交抛物线C于A,B两点(其中A在B的上方),过线段AB的中点M且与x轴平行的直线依次交直线OA、OB,l于点P、Q、N(1)试探索PM与NQ长度的大小关系,并证明你的结论;(2)当P、Q是线段MN的三等分点时,求直线AB的斜率;(3)当P、Q不是线段MN的三等分点时,证明:以点Q为圆心、线段QO长为半径的圆Q不可能包围线段NP
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据正方体的性质确定3条棱两两互为异面直线的情况数,结合组合数及古典概率的求法,求任选3条其中任意2条所在的直线是异面直线的概率.【详解】如下图,正方体中如:中任意2条所在的直线都是异面直线,∴这样的3条直线共有8种情况,∴任选3条,其中任意2条所在的直线都是异面直线的概率为.故选:B.2、D【解析】利用最值的含义转化为不等式恒成立问题解决即可【详解】解:由题意可得,整理得,当时,不等式化简为恒成立,所以,当时,不等式化简为恒成立,所以,综上,,所以实数的取值范围是,故选:D3、A【解析】根据椭圆的定义求得正确选项.【详解】依题意,根据椭圆的定义可知,三角形的周长为.故选:A4、C【解析】设,,由消得:,又,由韦达定理代入计算即可得答案.【详解】设,,由消得:,所以,故.故选:C【点睛】本题主要考查了直线与抛物线的位置关系,直线的斜率公式,考查了转化与化归的思想,考查了学生的运算求解能力.5、C【解析】构造函数,分析函数在上的单调性,将所求不等式变形为,可得出关于的不等式,即可得解.【详解】构造函数,其中,则,所以,函数为上的奇函数,当时,,且不恒为零,所以,函数在上为增函数,且该函数在上也为增函数,故函数在上为增函数,因为,则,由得,可得,解得故选:C.6、A【解析】求出圆心到直线的距离,然后与圆的半径进行大小比较即可求解.【详解】解:圆的圆心,,因为圆心到直线的距离,所以直线与圆的位置关系是相交,故选:A.7、D【解析】分截距为零和不为零两种情况讨论即可﹒【详解】当直线过原点时,满足题意,方程为,即2x-y=0;当直线不过原点时,设方程为,∵直线过(1,2),∴,∴,∴方程为,故选:D﹒8、B【解析】首先根据题意设出抛物线的方程,利用点在曲线上的条件为点的坐标满足曲线的方程,代入求得参数的值,最后得到答案.【详解】解:根据题意设出抛物线的方程,因为点在抛物线上,所以有,解得,所以抛物线的方程是:,故选:B.9、A【解析】根据空间向量平行求出x,y,进而求得答案.【详解】因为,所以存在实数,使得,则.故选:A.10、B【解析】根据题意,将问题转化为对任意的,,利用导数求得的最大值,再分离参数,构造函数,利用导数求其最大值,即可求得参数的取值范围.【详解】由题可知:对任意的,,都有恒成立,故可得对任意的,;又,则,故在单调递减,在单调递增,又,,则当时,,.对任意的,,即,恒成立.也即,不妨令,则,故在单调递增,在单调递减.故,则只需.故选:B.11、B【解析】利用定义法进行判断.【详解】把代入,得:,解得:或.当时,可化为:,解得:,此时“”是“”的充要条件,应舍去;当时,可化为:,解得:或,此时“”是“”的充分不必要条件.故.故选:B12、A【解析】先作辅助线,设出边长,结合题干条件得到,,利用勾股定理得到关于的等量关系,求出离心率.【详解】连接,设,则根据可知,,因为,由勾股定理得:,由双曲线定义可知:,,解得:,,从而,解得:,所以,,由勾股定理得:,从而,即该双曲线的离心率为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由正弦定理可得,又,,,,,在三角形中,.考点:1正弦定理;2正弦的二倍角公式.14、【解析】首先求出函数的导函数,再令代入计算可得;【详解】解:因为,所以,所以,解得;故答案为:15、10【解析】作出不等式区域,如图所示:目标最大值,即为平移直线的最大纵截距,当直线经过点时最大为10.故答案为10.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.16、##0.5【解析】直接计算得到答案.【详解】∵,,则,.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】(1)取中点,连接,根据直棱柱的特征,易知,再由、分别为的中点,根据中位线定理,可得,得到四边形为平行四边形,再利用线面平行的判定定理证明.(2)取的中点,连接,以为原点,、、分别为、、轴建立空间直角坐标系,则.,再分别求得平面和平面的一个法向量,利用面面角的向量公式求解.【详解】(1)证明:如图所示:取中点,连接,易知,、分别为的中点,∴,∴故四边形为平行四边形,∴,∵平面,平面,平面(2)取的中点,连接,以为原点,、、分别为、、轴建立如图所示的空间直角坐标系,如图所示:则∴,设平面的法向量为,则,即,取,得,易知平面的一个法向量为,∴,∴二面角的余弦值为【点睛】本题主要考查线面平行的判定定理和面面角的向量求法,还考查了转化化归的思想和运算求解的能力,属于中档题.18、(1)证明见解析;(2).【解析】(1)根据线面垂直的判定定理来证得平面.(2)建立空间直角坐标系,利用向量法来求得平面与平面所成角的余弦值.【小问1详解】由于平面,所以,由于,所以平面.【小问2详解】建立如图所示空间直角坐标系,平面的法向量为,,设平面的法向量为,则,故可设.设平面与平面所成角为,则.19、每年至少要还6.17万元.【解析】根据贷款总额和还款总额相等,50(1+4%)10=x·(1+4%)9+x·(1+4%)8+…+x,求解即可.【详解】50万元10年产生本息和与每年还x万元的本息和相等,故有购房款50万元十年的本息和:50(1+4%)10,每年还x万元的本息和:x·(1+4%)9+x·(1+4%)8+…+x=,从而有50(1+4%)10=,解得x≈6.17,即每年至少要还6.17万元.20、【解析】方法一:根据平面向量基本定理即可解出;方法二:先求出平面的一个法向量,再根据即可求出【详解】方法一:,由题意知A,B,C,P四点共面,则存在实数,满足∵,∴∴,而,∴方法二:,设平面的一个法向量为,则,∴取,则,∵,∴,解得21、(1)(2)6【解析】(1)由可得,再利用正弦定理和三角函数恒等变换公可得,从而可求出角的值,(2)利用正弦定理求出,再利用余弦定理结合基本不等式可得的最大值为4,从而可求出三角形周长的最大值【小问1详解】由,得
,由正弦定理,得,即.在中,由,得.又,所以.【小问2详解】根据题意,得,由余弦定理,得,即,整理得,当且仅当时,取等号,所以的最大值为所以.所以的周长的最大值为
.22、(1),证明见解析(2)(3)证明见解析【解析】(1)根据已知条件设出直线方程及,与抛物线的方程联立,利用韦达定理和中点坐标公式,三点共线的性质即可求解;(2)根据已知条件得出,运用韦达定理和弦长公式,可得出直线的斜率;(3)根据(1)的结论及求根公式,求得点的坐标,结合的表达式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026山东大学网络空间安全学院诚邀全球青年才俊备考题库及答案详解一套
- 2026江西南昌东站、南昌西站随车餐服招聘50人备考题库【入职缴纳五险一金】及1套参考答案详解
- 2026广西北海市农业技术服务中心招录公益性岗位人员1人备考题库及1套参考答案详解
- 2026年1月广东广州市天河第二实验幼儿园招聘编外聘用制专任教师2人备考题库及答案详解一套
- 2026上半年安徽事业单位联考金寨县招聘105人备考题库及一套答案详解
- 2026年甘肃庆阳环县数字就业基地在线客服岗位1月招聘30人备考题库及答案详解参考
- 安砌侧平缘石施工方案
- 高标准农田建设项目审计方案范本
- 电力电缆直埋施工方案
- 西藏西藏气象部门2025年招聘9名应届高校毕业生(第二批)笔试历年参考题库附带答案详解
- 2026中国电信四川公用信息产业有限责任公司社会成熟人才招聘备考题库及参考答案详解1套
- 2025年广东省生态环境厅下属事业单位考试真题附答案
- 2026年安徽省公务员考试招录7195名备考题库完整参考答案详解
- 【地理】期末模拟测试卷-2025-2026学年七年级地理上学期(人教版2024)
- LoRa技术教学课件
- 统筹发展与安全课件
- 弱电项目实施管理方案
- 2025年山西省公务员考试《申论》试题及答案解析(县乡卷)
- 2025年法考客观题真题回忆版(含答案)
- 2026年铁岭卫生职业学院单招职业技能测试题库附答案详解
- 操作系统安装与配置标准
评论
0/150
提交评论