版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AIasaScientificCollaborator
Frombiologytoblackholes,ChatGPTisacceleratingresearchJanuary2026
Introduction:WhyAIforScienceMatters
8.4million
averageweeklymessages
onadvancedtopicsinthehardsciencesandmathematics
Roughly
1.3million
weekly
ChatGPTusers
focusonadvancedmath&sciencetopicsworldwide
Thenumberofmonthly
advancedsciencemessages
grewnearly50%
lastyear
OpenAIisbuildingtoolstohelpresearchersgenerateinsights,acceleratescientificdiscoveryandtranslatethoseinsightsintoreal-worldimpact.AcrossChatGPT,researchers,students,STEMfacultyandengineersalreadyuseAItoreadandsynthesizetechnicalliteratures,debugandwritecode,analyzedata,andplanexperiments.Eachweek,ChatGPTseesalmost8.4millionmessagesonadvancedtopicsinthesciencesandmathematics.Thesenowcomefromroughly1.3millionweeklyusersworldwide.
Onlyabout0.1percentoftheglobalpopulationidentifiesasscientists,accordingto
UNESCO
,andyettheyhaveanoutsizedimpact.Scientificresearchdrivestheengineofprogresstowardahealthier,moreprosperous,andmoreresilientfuture.Newmedicines,newtechnologies,andnewindustriescomefromnewknowledgeputtopracticaluse.Asmallgroupofearlytwentieth-centuryphysicistslaidthefoundationsofquantummechanicsthroughabstractresearchthat,decadeslater,wouldunderpinmuchofthemoderndigitaleconomy,nowmeasuredinthetensoftrillionsofdollars.Basicresearch–workdonebeforethepayoffisclear–wasthesourceofthatknowledge.In1947,scientistsatBellLabscreatedthefirstworkingtransistor,
based
oninsightsfromquantumphysics.Thetransistorbecameabuildingblockofcomputers,phones,andtoday’sdigitaltechnology.TheGlobalPositioningSystem(GPS)reliesonEinstein’s
insightsintorelativity
toguideourcarsandkeepatomicclocksaligned.
2
Yetinmanydomains,itisgettinghardertokeepmakingprogress.Economistsandresearchanalystspointtofalling“researchproductivity,”meaningmorepeople,time,andmoneyarerequiredtoproducethesamenumberofinsights.Semiconductorsofferawell-knownexample:sustainingMoore’sLawtodoublethenumberoftransistorsinanintegratedcircuiteverytwoyearshasrequiredadramaticincreaseineffort,withthenumberofresearchersneededtodayestimatedatmorethan
18times
whatwasneededintheearly1970s.Asknowledgegrowsmorecomplex,eachnewgenerationofresearchersfacesaheavierburdenjusttoreachthefrontier,whichlengthenstheirtrainingtimeandnarrowstheirspecializations.Institutionally,researchhasshiftedtowardlargerteams,withgrowingoverheadforgrantproposals,compliance,reporting,andcoordinationcosts.
Inmedicine,scientificadvanceshavesavedcountlesslives.Worldwide
lifeexpectancyrose
fromroughly32yearsin1900toabout73yearsin2023(andtomorethan78yearsintheUnitedStates).Buttheremainingburdenofdiseaseisheavy.ButtheWorldHealthOrganizationreportsthatnoncommunicablediseasessuchasstroke,heartdisease,cancer,anddiabetesstillaccountforabout
74%ofglobaldeaths
.Evenwhenprogressisrapid,turningnewideasintoavailabletreatmentstakestime.Onaverage,ittakes
10-15years
fromtargetdiscoverytoregulatoryapprovalofanewdrugintheUnitedStates,alagimposedonpatientswhoneednewandbettertreatments.
Makingprogressfasterwillsavelivesandimprovethem.AIisalreadyhelpingtoaddressthebottlenecksthatslowsciencedown.Modernresearchisfragmentedacrossdisciplinesandconstrainedbylimitsthatarebothcognitiveandlogistical:readinganddigestingenormousliteraturestodeterminewhatisknown,translatingideasintomathematicsandcode,settingupanalysesandsimulations,checkingcalculations,searchinghugedesignspaces,anddecidingwhichfutureexperimentsarethemostpromising.Usedwell,AIcanserveasahigh-throughputpartnerforthought,computation,andstructuredreasoning,shorteningthecyclefromhypothesistotestandincreasingthecapacityofresearchersworkingaloneandinteams,evenacrossdisciplinarybarriers.
KevinWeil,VPofOpenAIforScience,describestheopportunitythisway:“AIisincreasinglybeingusedasascientificcollaborator,andwe’reseeingitsimpactgrowinrealresearchsettings.Moreresearchersareusingadvancedreasoningsystemstomakeprogressonopenproblems,interpretcomplexdata,anditeratefasterinexperimentalwork.Thatusagehasbeengrowingquicklyoverthepastyear,andtheresultsarestartingtoshowupacrossfields.We’restillearly,butthepaceofadoptionandthequalityoftheworksuggestscienceisenteringanewaccelerationphase.”
OpenAIisproudtoworkwithresearchpartnersacrossgovernmentagencies,nationallaboratories,academia,andmedicine,includingtheU.S.DepartmentofEnergy,LawrenceLivermoreNationalLaboratory,theU.S.CentersforDiseaseControlandPrevention,HarvardUniversity,MassachusettsInstituteofTechnology,theUniversityofOxford,TexasA&MUniversity,andBostonChildren’sHospital.
3
Thisreportdetails:
1.HowAItoolsarealreadybeingusedinday-to-dayresearchworkflows,includingliteraturesynthesis,codegenerationanddebugging,dataanalysis,simulationsupport,andexperimentplanning
2.WhatearlyresultssuggestaboutAI’spotentialtosupportnewbreakthroughs
3.HowindividualscientistsacrossmultipledisciplineshaveusedChatGPTtomakeprogressintheirfield
4.PolicysuggestionstosupportcontinuedAIprogressinscienceandmath
4
ThescaleofscientificandmathematicalworkonChatGPT
AcrossChatGPT,asmallbutconsequentialcohortofresearchersusesOpenAI’sAImodelsforsophisticatedtasksrangingfromtechnicalderivations,advancedmathematics,engineeringsimulationandmodeling,andotheradvancedproblem-solving.ThisincludesscientistsandmathematiciansspanningPhDcandidatesandpost-docstoworkingresearchersandSTEMfaculty.
BasedonaninternalanalysisofafullrandomsampleofanonymizedChatGPTconversationsfromJanuarythroughDecember2025,averageweeklymessagecountsonadvancedscienceandmathtopicsgrewabout47%,from5.7millionmessagestonearly8.4millionmessagesoverthecourseof2025.AsofJanuary2026,therearenearly1.3millionweeklyusersdiscussingadvancedtopicsinscienceandmath.
Together,thesesignalsshowhowChatGPTisacceleratingadvancedresearch:withtensofmillionsofadvancedhard-scienceandmathpromptseachmonth,generatedbyalargeandgrowingcohortusingthesystemforseriousscientificandengineeringworktobenefitsocietyandsupporteconomicgrowth.
Here’showusagebreaksdownacrossdisciplinesamongourcohortofresearch-focusedusers:
5
WhatscientistsandmathematiciansactuallydowithChatGPT
Scientists,mathematicians,andengineersuseChatGPTasahighlyavailabletechnicalcollaborator:atoolwithwhichtheycaniterateoncalculations,translateideasintocode,interrogateassumptions,andcompresscomplexmaterialsintoworkablementalmodels.InOpenAI’sanalysis,“advanced”hardsciencepromptsaredefinedasthosebeingorientedtowardresearch,andrequiringgraduate-levelorresearch-levelexpertisetoanswercompetently.Withinthatcohort,behaviordiffersfromtypicalusersinwaysthatmapdirectlyontomodernresearchworkflows.
Researchtasksclusterindomainssuchascoding(drafting,reworking,anddebuggingcode),dataanalysis(cleaningandmergingdatasets,runningstatistics,interpretingresults),mathematicalreasoning(derivations,proofstrategies,algebraicchecking,longcalculations,translatingbetweenformalisms),andliteraturereviewandsynthesis(findingreferences,understandingrecentwork).
ContrastedwithtypicalusersofChatGPT,advancedscienceandmathusers:
●Sendroughly3.5×moremessagesthanthebaseline
●Sendcoding-relatedmessagesnearly12×moreoften
●Average9informational-overviewpromptsperweekvs.1.5prompts
6
Categorizedbymostcommontasks,hereishowthiscohorttendstouseChatGPT,:
7
AIatthefrontierofmathandscience
FrontierAIcapabilitiesinmathematics
Recentprogress
Overthelasttwoyears,largelanguagemodelshaveprogressedfromearly,unevenperformanceonbasicarithmetictohandlingmulti-stepmathematicalreasoningthatcanbeusefulinrealmathematicalwork.Muchofthatimprovementcamefrommethodsthatencouragestep-by-stepreasoning,andfromtighterintegrationwithtoolslikecalculatorsandcodeexecutionforexactcomputation.Asmodelsimproved,benchmarkingalsoshiftedtowardhardertestsdesignedtomeasuredeeperreasoningwhilereducing“patternmatching”wins.
In2025andearly2026,thegreatestimpacthascomefromtest-timecomputescaling,or“slowthinking.”Insteadofcommittingquicklytoonepath,amodelwillspendmorecomputationexploringalternativesandself-checking.Atthesametime,approachestotrainingthatrewardverifiableoutcomes,suchasproducingacorrectfinalanswerorexecutablecode,havepushedmathandcodingtobecomemorereliable,andcorrectoftenenoughtobeusefulwithhumanguidance.
OnesignofthisshiftcamewithInternationalMathematicalOlympiadcoverageinJuly2025,whenanOpenAImodelachieved
gold-levelperformance
onthe2025problemsetalongsideDeepMind.
Currentcapabilities
GPT-5.2’ssteadyadvanceinmathematicalcapabilitiesstemsfromstrongerlong-horizonreasoning,moresystematicverificationhabits,andbetteruseofcheckabletools.AIME,theAmericanInvitationalMathematicsExamination,isdesignedtotestmulti-stepproblemsolving:GPT-5.2ThinkingachievedaperfectscoreonAIME2025withoutexternaltools.TheGPT-5.2series(e.g.ThinkingandPro)hasprogressedpastcompetition-levelperformancetowardmathematicaldiscovery,includingworkonestablishedopenproblems.
Onresearch-stylebenchmarking,the“Google-proof”FrontierMathproblemsethasbeenconstructedtobeaccessibleonlytotrueexperts;i.e.evenasmartPhDstudentinmathcannotsolvetheminafewhoursofwork.Onthatbenchmark,GPT-5.2Thinkinghassolved
40.3%ofproblems
inTiers1–3.
8
Performancestilldropsonthehardesttier,whereGPT-5.2Prohasscored
31%onFrontierMathTier4
onasetofproblemsthatcanbedescribedas“miniresearchprojects.”
AsecondmajorcapabilityleaphasoccurredasGPT-5.2isincreasinglypairedwithformalverificationworkflows.Inoneprominentintegration,GPT-5.2generatesnaturallanguageproofsandusesAristotle,athird-partyLLM,toformalizethoseproofsinLean,whichisaproofassistantwhereproofsarewritteninaformacomputerchecksstepbystep,withthesystemdetectingandcorrectinggapsduringformalization.
Theseintegrationsmatterbecauseonelongstandingfailuremodeforlanguagemodelsinmathematicshappenswhenasolution“looksright”,butisn’t:i.e.argumentsthatappearplausible,butcontainsubtlegaps.Lean-checkedproofssubstantiallyraisethestandardofconfidenceinaproofbyforcingexplicit,mechanicallycheckedstepsunderastatedformalization.
Erdősproblems,AIsolutions
PaulErdős(1913–1996)wasaglobe-trottingHungarianmathematicianwholivedoutofasuitcase,movingfromcampustocampusashesoughtoutfellowmathresearchers.The“Erdősproblems”arethevastsetofquestionsandconjecturesheposed,rangingfromdeceptivelysimplepuzzlestoproblemsthatstillresistthebesttechniqueswehave.Theproblemshaveactedliketrailmarkersformodernmathematics:clarifyingwhatwedon’tyetunderstand,seedingwholeresearchprograms,anddrawinggenerationsofmathematicianstowardtheedgesoftheknown.
Inearly2026,GPT-5.2hascontributedtosolutionstoseveralopenErdősproblemswiththehelpoftoolslikeAristotleandLean,andwiththesolutionsvalidatedbyTerenceTao.Problems
#281
,
#728
,
#729
arenowlistedasproved,and
#397
asdisproved.WhilemathematicianscautionthatErdősproblemsvaryenormouslyindifficulty,thesesolutionspointtotheincreasingcapabilityofOpenAImodelstodorealmathematicalworkandmakenovelcontributionswithminimalguidance.
Near-termpotential
Somesignificantmathematicaldiscoveriescantaketheformofstitchingknownmethodstogethertofindthecorrectargument.GPT5.2candothisnowinmanycases.Otherdiscoveriesinvolveinventingentirelynewkindsofmath,asNewtoninventedcalculustounderstanddynamics(theforces,massandenergythatexplainchangesinmotion).ThatisbeyondcurrentAImodels.Butathirdtypeofsignificantdiscoveryinvolvesestablishingconnectionsbetweentwofields,andbringingtheknownmachinery,resultsandtoolsofonefieldtotheother(e.g.algebraicgeometry,whicharosefromabstractalgebraandclassicalgeometry).ModestexamplesofthishavealreadyoccurredwithAI,andwebelievethesignificanceofthoseconnections,andthesubfieldscreatedfromthem,willincreaseinthenearfuture.
Atthesametime,muchofAI’snear-termvaluewillbeintransformingworkflows.GPT-5.2canproposeanditerateonsolutionpaths,whileexternaltoolsenforcecorrectnessthroughexactcomputationorformalchecking.Thisalignswithbroadertrendstowardhybridapproachesandauto-formalization,
9
whereinformalmathistranslatedintoformallanguageslikeLeansothatcorrectnesscanbeverifiedmechanically.GPT-5.2isalreadyusefulforliteraturereview(surveyingwhatisknown)tolocatetheedgeofknowledgeandsurfaceunexpectedorobscurereferences.Itisusefulincomingupwithproofs,critiquingthem,simplifyingthemandsuggestingproofstrategies.
Ifthistrajectorycontinues,GPT-5.2’snear-termimpactislikelytoshowupasabroadproductivityupgradeformathematicalresearchers,aswellasscienceandengineeringteams(sincemathisacorecomponentofmuchscientificandengineeringwork):thiswillmanifestasfastertranslationfromamessyproblemdescriptiontoacleanmathematicalstatement,fewerdroppedconstraintsinmulti-stepderivations,morereliabledebuggingofcalculationsandproofs,andagrowingshareofresultsthatcanbebackedbyformalverification.
10
FrontierAIcapabilitiesinscience
Acrossdisciplinessuchasphysics,chemistry,andbiology,ChatGPT-classLLMsincreasinglysupporttechnicalreasoningandtool-mediatedresearchworkflows,aswellasscientificwriting.BenchmarkslikeGPQA,agraduate-levelsetof“Google-proof”questionsauthoredbydomainexperts,initiallyshowedasignificanthumanadvantage,withexpertsreaching65%accuracywhiletheGPT-4baselinereached39%.OpenAInowreports
GPQADiamondaccuracy
of93.2%forGPT-5.2Proand92.4%forGPT-5.2Thinking(withnotoolsenabledandatmaximumreasoningeffort),suggestingahigherbaselineforgraduate-levelscientificquestionansweringacrossmanyscientificdisciplines.Inparallel,automatingtheunspokendrudgeryofresearch–referencehunting,bibliographyassembly,androutineadministrativereporting–freesscientists’scarceattentionforhigher-valuework.Pairedwithinformationretrievalandexecutabletoolsthatenablecheckablecalculationsandstepwisevalidation,thesemodelsarebecomingreliableworkfloworchestratorsforscientificplanning,analysis,anddocumentation,teeingupaccelerationacrossmanyfields.
Physics
Lastmonth,OpenAIannouncedamemorandumofunderstandingwiththeUSDepartmentofEnergytosupportcollaborationonAIandadvancedcomputinginordertoadvanceDOEinitiativesincludingtheGenesisMission,withapplicationsinenergysuchasfusionresearch.
Inphysics,LLMsarebeingusedacrossmajorfacilities,includingmany
USnationallabs
,asaunifyinglayerovercomplexoperationsstacksandinternalknowledgebases,acceleratinganalysisanddecision-makingunderstrictconstraintsalongsideexistingmachine-learningtoolsforsimulation,real-timedatareduction,andexperimentalcontrol.LLMscandigestshiftlogsandalerts,answerquestionsfrominternaldocumentation,andhelprouteworktotherightanalysis,simulation,orcontroltool,allunderstrictsafety,timing,andresourceconstraints.Thisaugmentsalongertrackrecordofspecializedmachinelearninginphysics:neural“surrogate”modelsthatapproximateequation-governedsimulationswhenfullcomputationistooslow,real-timefilteringandreconstructioninparticledetectorsthatseetensofmillionsofcollisionspersecond,andmachine-learningsupportedcontrollersthatcoordinatethemanyelectromagnetsintokamakfusionexperimentswhilestayingwithinhardwareandsafetylimits.
Near-termgainsinphysicsarelikelytoconcentrateinhigh-throughput,decision-heavysettingswhereexpertattentionandturnaroundtimearethebottlenecks.AIassistantsthatcanreferencealab’sinternaldocumentationandrunautomatedcheckscanturnliveexperimentalerts,notes,andlogfilesintoprioritizednext-stepresearchplansandrepeatableanalyticoutputs,suchasnotebooks,scripts,andreports.
11
Intheoreticalphysics,LLMswillcontinuetodelivervalueasthoughtpartnerscompressingresearchers’cognitiveoverheadwhileexpandingthespaceofexploration.Whenacomplexcalculationhitsaroadblock,LLMscansurfacewaystoreframetheproblem,suggestintermediatesteps,andprovidequickconsistencychecksthatreducetimethatphysicistsspendbeing“stuck.”Sometimesthisproducesinsightslikeamissingcondition,acleanerformulation,orausefulrelationshipbetweenexpressionsthatcanbecomeameaningfulingredientofapaper.Thelargermultipliermaycomefromsynthesizingresearchatscale,wheremodelsscantheliteratureacrosspapersandsubfieldstosurfacenewconnectionsautomatically.
Chemistry
ChatGPT’sapplicationsinchemistryhavemovedpastone-shotquestionansweringtowardmulti-stepworkflowsthattranslatebetweennaturallanguageandchemicalrepresentations,andrelyonexternaltoolsforverificationandretrieval.
ChemBench
,publishedinNatureChemistryin2025,curatedmorethan2,700expert-writtenquestionsandfoundthatleadingmodelsoutperformedhumanchemistsonaverage,whilestillstrugglingonsomebasictasksandproducingoverconfidenterrors.
LeadingAIsystemsinchemistryincreasinglyuseahybridworkflow:ageneral-purposeLLMhelpstoplanmulti-stepworkandcoordinatetools,whilespecializedmodelsthatunderstandmolecularstructurehandlepredictionandsimulation.Akeyexampleisstate-of-the-artgraphneuralnetworks(GNNs):thesemodelstreatamoleculelikeanetwork,withatomsasnodesandbondsasconnections,sothesystemcanlearnhowlocalchangesaffectthewholestructure.NewerGNNsaredesignedsotheirpredictionsremainconsistentwhenamoleculeisrotatedorshiftedin3Dspace,whichmakesthemwellsuitedforlearningtheenergyrulesneededtorunfast,accuratemolecularsimulations.Asmoleculargraphmodelsscalewithmoredataandpretraining,resultscontinuetoimprove,buttougherbenchmarksforchemicalreasoning,includingorganicreactionmechanismtaskssuchas
oMeBench
,underscoretheneedforhumanoversight.
12
Biology
ChatGPT’sapplicationsinbiologyincreasinglyextendintomulti-stepworkflowsthatcombinenatural-languagequestionswithstructuredscientificsourcessuchasgenomicsdatabases,proteinrepositories,andthebiomedicalliterature,oftenwithcodeandretrievaltoolsusedfortraceabilityandverification.
GeneTuring
,a2025genomicsbenchmarkinBriefingsinBioinformatics,curated1,600questionsacross16tasktypesandmanuallyevaluated48,000answersfrommultiplemodelconfigurations.Thestrongestresultscamefromatool-augmentedsetupthatpairedageneral-purposemodelwithdirectaccesstoNationalCenterforBiotechnologyInformation(NCBI)APIs,reinforcingthatreliabilityimproveswhenlanguagemodelsareconnectedtoauthoritativereferencedataandcanshowtheirwork.
Aswithchemistry,state-of-the-artAI-enabledresearchinbiologyreliesonhybridstacks:general-purposelanguagemodelshelpplanandcoordinateanalysis,whilespecializedfoundationmodelstrainedonbiologicalsequencesandstructurespowerpredictionanddesign.Inproteinscience,
AlphaFold3
representsasteptowardunifiedbiomolecularmodelingbypredictingthejoint3Dstructureofcomplexesthatcanincludeproteins,DNAandRNA,andsmallmoleculeswithinadiffusion-basedarchitecture.
13
14
Usecaseprofiles
ErnestRyu-Mathematician
ErnestRyupickedupChatGPToutofcuriosityin2023,andsawitadvanceuntilitcouldgenerateapublishableresultlastyear.Ryu’sacademicworkhasfocusedonoptimization:themathbehindefficient,reliablealgorithmsthatsupportmoderneconomies,fromplanninglogisticstokeepingaircraftwingsstable.
Whenlargelanguagemodelsweresurginginpopularityin2023,Ryubeganhisfirstexperiments:couldamodeltranslatereal-world“wordproblems”intopreciseoptimizationmodels,includingallthehiddenconstraints,andthenhandthemtoasolver?Schedulingabaseballseason,forexample,requireshardconstraints(e.g.noteamplaystwogamesatthesametime)andsofterones(e.g.travelrestdaysthatcanbeviolatedifnecessary).Thatearlymodelstruggledwiththecarefulconstrainthandlingthisworkdemands,sometimesomittingconstraintsandfailingonlarger,realisticschedules.
Theinflectionpointcamelastyear,afterthearrivalofreasoningmodelsandOpenAI’swinninggoldattheInternationalMathematicalOlympiad.ThesameclassofschedulingproblemsRyuhadtestedbeforewerereliablysolved.ThatsuccessledRyutoapplyLLMstoeverydaymathematicalwork:whilewritinglectures,RyubeganaskingChatGPTforproofsofresultsheknewweretruebutdidn’thavetopofmind.
Finally,hetrieditonresearch.RyuchoseaproblemrelatedtoNesterovacceleration,awell-knowntechniqueforspeedingupoptimization,andpickedaversionoftheproblemthatwasopenlongenoughthatothershadattemptedit,yetsimpleenoughthatashortproofmightexist.Forthreeconsecutiveevenings,afterhissonwenttobed,heworkedfrom8pmtomidnight,andbythethirdnighthehadguidedAItothepointwhereitcrackedtheproblem.
Theircollaborationlookedlikerealresearch.Themodelproducedaninitialproofwithacalculationmistake,soRyubegantoiterate:hecorrectedtheerror,preservedthecorrectintermediatestepsinagrowingprompt,abandoneddeadends,andpushedthemodelintootherapproaches.Ryudescribesthisasmazerunning,whereyouturndowncorridorsandopendoors,sometimesonlytofindthemempty,whilekeepingamentalmapofwhatfailsandwhatseemspromising.ChatGPThelpedRyuacceleratehowfastheranthemazeby3xto10x.
15
Onthethirdnight,themodelmadeasmallbutmeaningfulleapthat“lookeddifferent”enoughtounlocktheproof.Ryusaidhe“morethantriple-checked”theargument,thenhadastudentverifyit,beforeheshareditpubliclytoanoptimizationcommunitythatreactedwithsurpriseandexcitement.Fromthere,thecontinuous-timeresultwastranslatedintothediscrete-timealgorithmstatementwithasingleprompt,leavingashort,onenovelcorethatmetthestandardforapublishableadvance.
Sincethen,RyuhasjoinedOpenAI’ssyntheticdatateam,wherehiscorefocusisimprovingthemodel’smathematicalcapability.
AlexLupsasca-Physicist
AlexLupsascacametoAIthewaymanyphysicistscometoboldclaims:withpoliteskepticismandabunchoftests.Inearly2025,hetriedChatGPT,andhefounditusefulfortheroutineadministrativetasksthatregularlypopupinacademia.Buthedidnotseeitasatoolforthehardpartofthejob:turningthelawsofphysicsintoconcreteandverifiablepredictions.
Acommonrealityofacademicpublishing,Lupsascasays,isthataresearchprojectmayoftenresultinadraftequationsandroughconnectivetissue,andaprofessor’sworkbecomesthatofacopyeditor,especiallywhencollaboratorsarewritingoutsidetheirfirstlanguage.ChatGPTcantakearough
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年葫芦岛市建昌县宣传部及社会工作部所属事业单位公开招聘高层次人才9人备考题库完整答案详解
- 2026南平市公路应急保障中心招聘1人备考题库及答案详解参考
- 2026江西赣州市青少年活动中心幼儿园招聘1人备考题库及一套参考答案详解
- 2025福建福州市鼓楼区鼓东街道招聘专职网格员1人备考题库(12月)及答案详解(考点梳理)
- 2026贵州松桃苗族自治县事业单位招聘44人考试参考试题及答案解析
- 2026江苏南京大学招聘备考题库XZ2025-428医学院专业、技术人员备考题库及答案详解(夺冠系列)
- 2026广西玉林市皮肤病医院编外人员招聘3人备考题库完整参考答案详解
- 2026年古典文学常识测试题集
- 2026吉林长春市吉林大学白求恩第一医院风湿免疫科招聘备考题库及答案详解(考点梳理)
- 2026天津理工大学中环信息学院招聘博士教师4人备考题库有完整答案详解
- DB5101∕T 161-2023 公园城市乡村绿化景观营建指南
- 2024-2025学年湖北省武汉市江汉区七年级(下)期末数学试卷
- 重庆市2025年高考真题化学试卷(含答案)
- 工地材料管理办法措施
- 感术行动培训课件
- 建筑工程生产管理培训
- 脓毒症集束化治疗更新
- 卧床老人口腔护理规范
- 村党支部换届工作报告
- JG/T 154-2003电动伸缩围墙大门
- 对招标文件及合同条款的认同声明
评论
0/150
提交评论