版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省南平市第一中学2026届数学高一上期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知a=20.1,b=log43.6,c=log30.3,则()A.a>b>c B.b>a>cC.a>c>b D.c>a>b2.已知函数的图像关于直线对称,且对任意,,有,则使得成立的x的取值范围是()A. B.C. D.3.已知表示不大于的最大整数,若函数在上仅有一个零点,则实数的取值范围为()A. B.C. D.4.若a>b>1,0<c<1,则下列式子中不正确的是()A. B.C. D.5.已知a,b∈(0,+∞),函数f(x)=alog2x+b的图象经过点(4,1)A.6-22 B.C.4+22 D.6.不论a取何正实数,函数恒过点()A. B.C. D.7.已知,则的大小关系为()A. B.C. D.8.函数图象的一条对称轴是A. B.x=πC. D.x=2π9.函数(为自然对数的底)的零点所在的区间为A. B.C. D.10.已知函数是定义在上的偶函数,且在区间上单调递增.若实数满足,则的最大值是A.1 B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某网店根据以往某品牌衣服的销售记录,绘制了日销售量的频率分布直方图,如图所示,由此估计日销售量不低于50件的概率为________12.函数的定义域为_________________________13.在平面直角坐标系中,已知点A在单位圆上且位于第三象限,点A的纵坐标为,现将点A沿单位圆逆时针运动到点B,所经过的弧长为,则点B的坐标为___________.14.函数,若为偶函数,则最小的正数的值为______15.已知甲运动员的投篮命中率为0.7,乙运动员的投篮命中率为0.8,若甲、乙各投篮一次,则恰有一人命中的概率是___________16.对于定义在区间上的两个函数和,如果对任意的,均有不等式成立,则称函数与在上是“友好”的,否则称为“不友好”的(1)若,,则与在区间上是否“友好”;(2)现在有两个函数与,给定区间①若与在区间上都有意义,求的取值范围;②讨论函数与与在区间上是否“友好”三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知全集,集合,集合.(1)当时,求,;(2)若,求实数的取值范围.18.(1)已知,,,求的最小值;(2)把角化成的形式.19.知,.(Ⅰ)若为真命题,求实数的取值范围;(Ⅱ)若为成立的充分不必要条件,求实数的取值范围.20.已知函数的定义域为(1)求的定义域;(2)对于(1)中的集合,若,使得成立,求实数的取值范围21.已知函数,函数.(1)填空:函数的增区间为___________(2)若命题“”为真命题,求实数的取值范围;(3)是否存在实数,使函数在上的最大值为?如果存在,求出实数所有的值.如果不存在,说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】直接判断范围,比较大小即可.【详解】,,,故a>b>c.故选:A.2、A【解析】解有关抽象函数的不等式考虑函数的单调性,根据已知可得在单调递增,再由与的图象关系结合已知,可得为偶函数,化为自变量关系,求解即可.【详解】设,在增函数,函数的图象是由的图象向右平移2个单位得到,且函数的图像关于直线对称,所以的图象关于轴对称,即为偶函数,等价于,的取值范围是.故选:A.【点睛】本题考查函数的单调性、奇偶性、解不等式问题,注意函数图象间的平移变换,考查逻辑推理能力,属于中档题.3、C【解析】根据题意写出函数表达式为:,在上仅有一个零点分两种情况,情况一:在第一段上有零点,,此时检验第二段无零点,故满足条件;情况二,第二段有零点,以上两种情况并到一起得到:.故答案为C.点睛:在研究函数零点时,有一种方法是把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,这样就可利用导数研究新函数的单调性与极值,从而得出函数的变化趋势,得出结论.4、D【解析】利用对数函数、指数函数与幂函数的单调性即可判断出正误.【详解】解:,,,A正确;是减函数,,B正确;为增函数,,C正确.是减函数,,D错误.故选.【点睛】本题考查了对数函数、指数函数与幂函数的单调性,考查了推理能力与计算能力,属于基础题.5、D【解析】由函数f(x)=alog2x+b的图象经过点(4,1)得到2a+b=1【详解】因为函数f(x)=alog2x+b图象经过点(4,1),所以有alog24+b=1⇒2a+b=1,因为a,b∈(0,+∞),所以有(故选:D【点睛】本题考查了基本不等式的应用,用“1”巧乘是解题的关键,属于一般题.6、A【解析】令指数为0,即可求得函数恒过点【详解】令x+1=0,可得x=-1,则∴不论取何正实数,函数恒过点(-1,-1)故选A【点睛】本题考查指数函数的性质,考查函数恒过定点,属于基础题7、B【解析】先对三个数化简,然后利用指数函数的单调性判断即可【详解】,,,因为在上为增函数,且,所以,所以,故选:B8、C【解析】利用函数值是否是最值,判断函数的对称轴即可【详解】当x时,函数cos2π=1,函数取得最大值,所以x是函数的一条对称轴故选C【点睛】对于函数由可得对称轴方程,由可得对称中心横坐标.9、B【解析】分析:先判断函数的单调性,然后结合选项,利用零点的存在定理,即可求解.详解:由题意,函数为单调递减函数,又因为,由函数的零点判断可知,函数的零点在区间,故选B.点睛:本题主要考查了函数的零点的判定定理及应用,其中熟记函数的零点的存在定理是解答本题的关键,着重考查了推理与计算能力,属于基础题.10、D【解析】根据题意,函数f(x)是定义在R上的偶函数,则=,又由f(x)区间(﹣∞,0)上单调递增,则f(x)在(0,+∞)上递减,则f(32a﹣1)⇔f(32a﹣1)⇔32a﹣1<⇔32a﹣1,则有2a﹣1,解可得a,即的最大值是,故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、55【解析】用减去销量为的概率,求得日销售量不低于50件的概率.【详解】用频率估计概率知日销售量不低于50件的概率为1-(0.015+0.03)×10=0.55.故答案为:【点睛】本小题主要考查根据频率分布直方图计算事件概率,属于基础题.12、(-1,2).【解析】分析:由对数式真数大于0,分母中根式内部的代数式大于0联立不等式组求解x的取值集合得答案详解:由,解得﹣1<x<2∴函数f(x)=+ln(x+1)的定义域为(﹣1,2)故答案为(﹣1,2)点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0定义域是{x|x≠0}(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定义域均为R.(6)y=logax(a>0且a≠1)的定义域为(0,+∞)13、【解析】设点A是角终边与单位圆的交点,根据三角函数的定义及平方关系求出,,再利用诱导公式求出,即可得出答案.【详解】解:设点A是角的终边与单位圆的交点,因为点A在单位圆上且位于第三象限,点A的纵坐标为,所以,,因为点A沿单位圆逆时针运动到点B,所经过的弧长为,所以,所以点的横坐标为,纵坐标为,即点B的坐标为.故答案为:.14、【解析】根据三角函数的奇偶性知应可用诱导公式化为余弦函数【详解】,其为偶函数,则,,,其中最小的正数为故答案【点睛】本题考查三角函数的奇偶性,解题时直接利用诱导公式分析即可15、38##【解析】利用相互独立事件概率乘法公式及互斥事件概率计算公式即求.【详解】∵甲运动员的投篮命中率为0.7,乙运动员的投篮命中率为0.8,∴甲、乙各投篮一次,则恰有一人命中的概率是.故答案为:0.38.16、(1)是;(2)①;②见解析【解析】(1)按照定义,只需判断在区间上是否恒成立;(2)①由题意解不等式组即可;②假设存在实数,使得与与在区间上是“友好”的,即,即,只需求出函数在区间上的最值,解不等式组即可.【详解】(1)由已知,,因为时,,所以恒成立,故与在区间上是“友好”的.(2)①与在区间上都有意义,则必须满足,解得,又且,所以的取值范围为.②假设存在实数,使得与与在区间上是“友好”的,则,即,因为,则,,所以在的右侧,又复合函数的单调性可得在区间上为减函数,从而,,所以,解得,所以当时,与与在区间上是“友好”的;当时,与与在区间上是“不友好”的.【点睛】本题考查函数的新定义问题,主要涉及到不等式恒成立的问题,考查学生转化与化归的思想、数学运算求解能力,是一道有一定难度的题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)A∪B={x|-2<x<3},;(2)(-∞,-2]【解析】(1)求解集合A,B根据集合交并补的定义求解即可;(2)由A∩B=A,得A⊆B,从而得,解不等式求解即可.试题解析:(1)由题得集合A={x|0<<1}={x|1<<3}当m=-1时,B={x|-2<x<2},则A∪B={x|-2<x<3}(2)由A∩B=A,得A⊆B..解得m≤-2,即实数m的取值范围为(-∞,-2].18、(1);(2).【解析】(1)利用基本不等式可求得的最小值;(2)将角度化为弧度,再将弧度化为的形式即可.【详解】解:(1)因为,,,,当且仅当时,等号成立,故的最小值为;(2),.19、(Ⅰ);(Ⅱ).【解析】(Ⅰ)解不等式即得;(Ⅱ)再求出不等式的解,由充分不必要条件与集合包含的关系得出不等关系,可求得结论【详解】(Ⅰ)若为真命题,解不等式得,实数的取值范围是.(Ⅱ)解不等式得,为成立的充分不必要条件,是的真子集.且等号不同时取到,得.实数的取值范围是.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是的充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含20、(1)(2)【解析】(1)的定义域可以求出,即的定义域;(2)令,若,使得成立,即可转化为成立,求出即可.【小问1详解】∵的定义域为,∴∴,则【小问2详解】令,,使得成立,即大于在上的最小值∵,∴在上的最小值为,∴实数的取值范围是21、(1)(写出开区间亦可);(2);(3).【解析】(1)根据单调性的定义结合奇偶性可得解;(2)令,问题转化为“”为真命题,根据基本不等式找函数的最小值即可;(3)当时,,记,若函数在上的最大值为,分和,结合对数函数的单调性列式求解即可.【详解】(1)函数的增区间为(写出开区间亦可);理由:,为偶函数,任取,,所以的增区间为.(2),令,当且仅当时取“”,“”为真命题可转化为“”为真命题,因为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- SAP(中国)秋招面试题及答案
- 2026紫金矿业招聘真题及答案
- 中国雄安集团有限公司2026校园招聘考试备考题库附答案
- 关于公开考调政协青川县委员会宣教中心工作人员的考试备考题库附答案
- 南充市房地产管理局2025年公开遴选参照管理人员(2人)参考题库附答案
- 定南县2025年公开招聘城市社区工作者(专职网格员)【10人】参考题库附答案
- 广东汇源通集团有限公司2026校园招聘参考题库必考题
- 抚州市2025年市属国有企业公开招聘员工市国威安保服务有限公司押运员体能测评参考题库必考题
- 攀枝花市社会工作服务促进中心2025年公开考调工作人员考试备考题库必考题
- 浙江国企招聘-2025台州市椒江工业投资集团有限公司公开招聘工作人员7人的参考题库必考题
- 宠物民宿创业规划
- 小学生家长教育心得分享
- 2025年银行柜员年终工作总结(6篇)
- 养生馆运营成本控制与盈利模型
- 2025年广东高校毕业生三支一扶考试真题
- 英语词根词缀词汇教学全攻略
- T-GDDWA 001-2023 系统门窗应用技术规程
- 铝业厂房建设项目施工组织方案
- 25年军考数学试卷及答案
- 消毒供应中心风险评估与改进措施
- 污水处理厂设备预防性维护方案
评论
0/150
提交评论