版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届西南名校曲靖一中数学高一上期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“x>1”是“x>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知函数在[2,8]上单调递减,则k的取值范围是()A. B.C. D.3.一个正三棱柱的三视图如图所示,则这个三棱柱的表面积为()A. B.C. D.4.已知函数是上的奇函数,且在单调递减,则三个数:,,之间的大小关系是()A. B.C. D.5.已知集合,集合,则()A.{-1,0,1} B.{1,2}C.{-1,0,1,2} D.{0,1,2}6.已知集合则()A. B.C. D.7.已知,则的最小值为().A.9 B.C.5 D.8.若,则有()A.最大值 B.最小值C.最大值2 D.最小值29.已知函数可表示为1234则下列结论正确的是()A. B.的值域是C.的值域是 D.在区间上单调递增10.角度化成弧度为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知是定义在上的奇函数,当时,,函数如果对,,使得,则实数m的取值范围为______12.已知定义在上的偶函数在上递减,且,则不等式的解集为__________13.设a为实数,若关于x的方程有实数解,则a的取值范围是___________.14.若,,,则的最小值为___________.15.=_______.16.某次学科测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.则参加测试的总人数为______,分数在之间的人数为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在2020年初,新冠肺炎疫情袭击全国,丽水市某村施行“封村”行动.为了更好地服务于村民,村卫生室需建造一间地面面积为30平方米且墙高为3米的长方体供给监测站.供给监测站的背面靠墙,无需建造费用,因此甲工程队给出的报价为:正面新建墙体的报价为每平方米600元,左右两面新建墙体报价为每平方米360元,屋顶和地面以及其他报价共计21600元,设屋子的左右两侧墙的长度均为x米.(1)当左右两面墙的长度为多少时,甲工程队报价最低,最低报价为多少?(2)现有乙工程队也参与此监测站建造竞标,其给出的整体报价为元,若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求a的取值范围.18.已知函数(1)求的最小正周期;(2)当时,求的最小值以及取得最小值时的集合19.为宣传2022年北京冬奥会,某公益广告公司拟在一张矩形海报纸(记为矩形,如图)上设计三个等高的宣传栏(栏面分别为一个等腰三角形和两个全等的直角梯形),宣传栏(图中阴影部分)的面积之和为.为了美观,要求海报上所有水平方向和竖直方向的留空宽度均为.设直角梯形的高为.(1)当时,求海报纸的面积;(2)为节约成本,应如何选择海报纸的尺寸,可使用纸量最少(即矩形的面积最小)?20.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点,研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过4尾/立方米时,的值为2千克/年:当时,是的一次函数,当达到20尾/立方米时,因缺氧等原因,的值为0千克/年.(1)当时,求关于的函数解析式;(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.21.甲、乙两城相距100km,某天然气公司计划在两地之间建天然气站P给甲、乙两城供气,设P站距甲城.xkm,为保证城市安全,天然气站距两城市的距离均不得少于10km.已知建设费用y(万元)与甲、乙两地的供气距离(km)的平方和成正比(供气距离指天然气站到城市的距离),当天然气站P距甲城的距离为40km时,建设费用为1300万元.(1)把建设费用y(万元)表示成P站与甲城的距离x(km)的函数,并求定义域;(2)求天然气供气站建在距甲城多远时建设费用最小,并求出最小费用的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据充分、必要条件间的推出关系,判断“x>1”与“x>0”的关系.【详解】“x>1”,则“x>0”,反之不成立.∴“x>1”是“x>0”的充分不必要条件.故选:A.2、C【解析】利用二次函数的单调性可得答案.【详解】因为函数的对称轴为所以要使函数在[2,8]上单调递减,则有,即故选:C3、D【解析】由三视图可知,该正三棱柱的底面是边长为2cm的正三角形,高为2cm,根据面积公式计算可得结果.【详解】正三棱柱如图,有,,三棱柱的表面积为.故选:D【点睛】本题考查了根据三视图求表面积,考查了正三棱柱结构特征,属于基础题.4、D【解析】根据题意,得函数在上单调递减,又,,然后结合单调性判断【详解】因为函数是上奇函数,且在单调递减,所以函数在上单调递减,∵,,∴,即故选:D5、B【解析】由交集定义求得结果.【详解】由交集定义知故选:B6、D【解析】首先解一元二次不等式求得集合A,之后利用交集中元素的特征求得,得到结果.【详解】由解得,所以,又因为,所以,故选:D.【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.7、B【解析】首先将所给的不等式进行恒等变形,然后结合均值不等式即可求得其最小值,注意等号成立的条件.【详解】.,且,,当且仅当,即时,取得最小值2.的最小值为.故选B.【点睛】本题主要考查基本不等式求最值的方法,代数式的变形技巧,属于中等题.8、D【解析】构造基本不等式即可得结果.【详解】∵,∴,∴,当且仅当,即时,等号成立,即有最小值2.故选:D.【点睛】本题主要考查通过构造基本不等式求最值,属于基础题.9、B【解析】,所以选项A错误;由表得的值域是,所以选项B正确C不正确;在区间上不是单调递增,所以选项D错误.详解】A.,所以该选项错误;B.由表得的值域是,所以该选项正确;C.由表得的值域是,不是,所以该选项错误;D.在区间上不是单调递增,如:,但是,所以该选项错误.故选:B【点睛】方法点睛:判断函数的性质命题的真假,一般要认真理解函数的定义域、值域、单调性等的定义,再根据定义分析判断.10、A【解析】根据题意,结合,即可求解.【详解】根据题意,.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先求出时,,,然后解不等式,即可求解,得到答案【详解】由题意,可知时,为增函数,所以,又是上的奇函数,所以时,,又由在上的最大值为,所以,,使得,所以.故答案为【点睛】本题主要考查了函数的奇偶性的判定与应用,以及函数的最值的应用,其中解答中转化为是解答的关键,着重考查了转化思想,推理与运算能力,属于基础题.12、【解析】因为,而为偶函数,故,故原不等式等价于,也就是,所以即,填点睛:对于偶函数,有.解题时注意利用这个性质把未知区间的性质问题转化为已知区间上的性质问题去处理13、【解析】令,将原问题转化为方程有正根,利用判别式及韦达定理列出不等式组求解即可得答案.【详解】解:方程可化,令,则,所以原问题转化为方程有正根,设两根分别为,则,解得,所以的取值范围是,故答案为:.14、3【解析】利用基本不等式常值代换即可求解.【详解】因为,,,所以,当且仅当,即时,等号成立,所以的最小值为3,故答案为:315、##【解析】利用对数的运算法则进行求解.【详解】.故答案为:.16、①.25②.4【解析】根据条件所给的茎叶图看出分数在[50,60)之间的频数,由频率分布直方图看出分数在[50,60)之间的频率和[90,100)之间的频率一样,继而得到参加测试的总人数及分数在[80,90)之间的人数.【详解】成绩在[50,60)内的频数为2,由频率分布直方图可以看出,成绩在[90,100]内同样有2人,由,解得n=25,成绩在[80,90)之间的人数为25-(2+7+10+2)=4人,所以参加测试人数n=25,分数在[80,90)的人数为4人.故答案为:25;4【点睛】本题主要考查茎叶图、频率分布直方图,样本的频率分布估计总体的分布,属于容易题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)当左右两面墙的长度为5时,报价最低为43200元;(2).【解析】(1)设甲工程队的总造价为元,推出,利用基本不等式求解最值即可;(2)由题意对任意的,恒成立.即恒成立,利用换元法以及基本不等式求解最小值即可【详解】(1)设甲工程队的总造价为元,则,当且仅当,即时等号成立即当左右两侧墙的长度为5米时,甲工程队的报价最低为43200元(2)由题意可得,对任意的,恒成立即,从而恒成立,令,,,又在,为单调增函数,故当时,所以【点睛】方法点睛:求函数的最值常用的方法有:(1)函数法;(2)数形结合法;(3)导数;(4)基本不等式法.要根据已知条件灵活选择方法求解.18、(1),(2),时【解析】(1)先利用同角平方关系及二倍角公式,辅助角公式进行化简,即可求解;(2)由的范围先求出的范围,结合余弦函数的性质即可求解【详解】解:(1),,,,故的最小正周期;(2)由可得,,当得即时,函数取得最小值.所以,时19、(1)(2)当海报纸宽为,长为,可使用纸量最少【解析】(1)根据已知条件,先求出梯形长的底边,再分别求出,,即可求解;(2)根据已知条件,结合基本不等式的公式,即可求解【小问1详解】宣传栏(图中阴影部分)的面积之和为,直角梯形的高为,则梯形长的底边,海报上所有水平方向和竖直方向的留空宽度均为,,,故海报面积为【小问2详解】直角梯形的高为,宣传栏(图中阴影部分)的面积之和为,,海报上所有水平方向和竖直方向的留空宽度均为,海报宽,海报长,故,当且仅当,即,故当海报纸宽为,长为,可使用纸量最少20、(1);(2)当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大为千克/立方米.【解析】(1)由题意:当时,.当时,设,在,是减函数,由已知得,能求出函数(2)依题意并由(1),,根据分段函数的性质求出各段的最大值,再取两者中较大的即可,由此能求出结果【详解】解:(1)由题意:当时,当时,设,显然在,减函数,由已知得,解得,,故函数(2)依题意并由(1)得,当时,为增函数,且当时,,所以,当时,的最大值为12.5当养殖密度为10尾立方米时,鱼年生长量可以达到最大,最大值约为12.5千克立方米【点睛】(1)很多实际问题中,变量间关系不能用一个关系式给出,这时就需要构建分段函数模型.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市道路照明节能改造施工详细方案
- 高层管理人员激励与分红设计方案
- 食品安全保障制度建设与执行指南
- 外贸合同管理操作流程汇编
- 医院信息化建设规划与系统集成方案
- 建筑工地扬尘监控与管理实施方案
- 高校学术诚信规范教育方案
- 宁夏高中物理会考历年真题集
- 小说创作技巧与案例分析
- 2026上海驱动新区医学技术学院招聘教学科研人员2人备考题库及答案详解1套
- 建设工程测绘验线标准报告模板
- 消防廉洁自律课件大纲
- 统编版九年级上册语文期末复习:全册重点考点手册
- 2025年11月15日江西省市直遴选笔试真题及解析(B卷)
- 金太阳陕西省2028届高一上学期10月月考物理(26-55A)(含答案)
- 小学生科普小知识:静电
- 2025年安全生产知识教育培训考试试题及标准答案
- 重庆市康德2025届高三上学期第一次诊断检测-数学试卷(含答案)
- 品牌管理指南的建模指南
- 导乐用具使用课件
- “师生机”协同育人模式的实践探索与效果评估
评论
0/150
提交评论